
250

6   Decisions and User-defined Questions

This chapter introduces the concept of conditional execution of a segment of code in a program.
A condition is the answer to a question about a current situation in the world. Our program 

checks a current condition in the world and makes a decision either to execute the code or not to 

execute the code. (Shakespeare considered a similar question!) Conditional execution is a key 
concept in computer programming that allows us to run some part of the program code only if 

some condition is true. 

In section 6-1, we look at how to write the code (encode) decision statements in Alice. In the real 
world, we make decisions all the time. In our virtual world, we use decisions to make animations 
execute in different ways depending on a condition such as where an object is located, what 

color it is, or whether or not an object is visible.

In sections 6-2 and 6-3, we delve into questions as a way of determining the current conditions in 
the world and as a way of getting information about objects. Built- in questions were previously 
discussed in Tips & Techniques 4. (Perhaps you will want to review that section.) In this chapter, 

we look at writing our own questions. 

From a programming perspective, questions are pure functions. In other words, questions do 
some computation, and return a value (leaving the state of the world unchanged). Questions 
naturally follow decisions. We often wish to invoke a question, and depending on the value the 

question returns, either perform some action or not. In computer science terminology, decisions 
and conditions allow us to control the flow of execution.



251

6-1 Decisions and Logical Questions

This section begins with an explanation of the process of making decisions in a program. 

Decisions are useful when writing programs where a method or some instructions are expected to 
run only under certain conditions. 

Decisions

Sometimes life is “one decision after another.” We only go out to mow the lawn if the grass isn’t 

wet. We only run the dishwasher if it’s full of dirty dishes. We only put a leash on the dog when 
taking the dog outside for a walk. 

Programming, too, is full of the decisions. In Alice an If/Else statement (we will often refer to 
If/Else as an If statement) is an instruction that makes a decision based on the answer to a logical

question. A logical question is one that can be answered true or false. In computer science, the 
term Boolean question is often used.5  In Alice, an If statement looks like the following: 

The green color of this block is a visual clue that an If statement is being used in the program. 

The If/Else statement has two parts (an If part and an Else part). If the answer to the question is 
true, the If part is executed and the Else part is skipped. But, if the answer to the question is 

"false" then the If part is skipped and the Else part is executed. The word true appears to the right 
of the word If. By default, Alice places a tile containing the word true  in the statement and then 
allows the programmer to drop a question on top of the tile that will (at runtime) evaluate to 

either true or false. The following example demonstrates how the If statement is used in practice.

If/Else Example 

In section 5-2, we revisited the world of Greek mythology with a Zeus animation. In the storyline 
for this world, a user can choose the next target of the god’s anger by clicking on a philosopher. 

Then, Zeus shoots his thunderbolt at the selected philosopher. (For convenience, the code for the 
shootBolt method is reproduced in Figure 6-1-1.) We had intended that Zeus only shoot the 
thunderbolt at a philosopher. Unfortunately, we found that if the user clicks on a cloud, Zeus also 

shoots his thunderbolt at the cloud. We had the same problem for the ground and the sky – and 
any other object that happened to be in the world. The problem is quite clear: we need some way 

to control whether or not Zeus shoots the thunderbolt at an object. 

5 Boolean questions are named after the 19th century English mathematician, George Boole, who developed symbolic logic and 

was the first (as far as we know) to be interested in expressions that can only evaluate to either true or false.



252

Figure 6-1-1. The shootBolt method (from Zeus world of section 5-2)

In the shootBolt method (as illustrated in Figure 6-1-1), any object that is mouse-clicked is 
automatically passed in to the parameter, who. We want to change the shootBolt method so that 
the bolt is shot at the object only if the object (represented by the parameter who) is one of the 

philosophers. The mechanism for making this decision is the If statement. We drag the If



253

statement into the shootBolt method and true is initially selected for the condition. Then, the Do
in order block is dragged inside the if statement block. The idea here is that the bolt will be shot 

at the who object only if some condition is true.  The last step is to drop a question on top of the 
true  tile to indicate what question is to be asked. As shown in Figure 6-1-2, we ask the question 

“who = = Homer”.  In Alice, “==” means “is equal to.”   We call is equal to a relational
operator because it checks the relationship between two values. 

Figure 6-1-2. Shooting the bolt only at Homer

To create the question “who = = Homer,” the who tile is dragged on top of the true tile and 
Homer is selected from the cascading menu, as shown in Figure 6-1-3.  Now, when the program 

is run, if Homer is mouse-clicked, Zeus shoots a bolt at Homer. 



254

Figure 6-1-3. Selecting who == question

Logical Operators

Of course, the “who = = Homer” question only checks for the condition that the object clicked is 
Homer. What about the other philosophers? This is an example where more than one condition is 
possible. We need a question that will also have Zeus shoot a bolt if the parameter who is Plato, 

Socrates, or Euripides. One way to make this happen is to use the logical operator or. The or
operator is available in the questions tab for the World, as shown in Figure 6-1-4.  The or

operator is a logical operator in the boolean logic category of world- level questions. The or
operation means exactly what it sounds like: “either this or that or possibly both.”  For example,
I will have a cone of vanilla ice cream or a cone of strawberry ice cream or I’ll take a swirl of 

both.

Figure 6-1-4. Logical operators

To use the or operator, the “either a or b or both” tile is dragged over the condition tile in the If

statement. In this example, we need to drag and drop the operator three times to account for all of 
the philosophers. Figure 6-1-5 illustrates the modified If statement. (The statement is broken into 



255

two lines to make it easily fit on the printed page – but is all on one line in Alice.) Now, when 
the program is run, clicking on any philosopher results in Zeus shooting a thunderbolt at that 

philosopher, but clicking on something else in the world causes no action.

Figure 6-1-5. Multiple conditions in an If statement

The or operator is only one of three logical operators available in Alice. Another logical operator 
(as can be seen in Figure 6-1-3) is the not logical operator. The not operator behaves just as it 

sounds – if the Boolean expression is true, not of the Boolean expression is false. And if the 
Boolean expression is false, not of the Boolean expression is true. The example,

evaluates to true only when the object clicked (represented by the parameter who) is not Homer. 
If the object clicked is Homer, the above expression evaluates to false.

The third logical operator is and. The and logical operator requires both of the Boolean
expressions to be true in order to evaluate to true. The example,

evaluates to true only if both the object clicked on is Homer, and the object clicked on has its 
color set to blue.

It is important to be very careful with expressions containing two or more logical operators. The 
following expression evaluates to true only if the object clicked on is Homer and Homer’s color 

is black or blue.

But, the expression shown below evaluates to true if the clicked object is black or it will
evaluate to true if the clicked object is Homer and Homer’s color is blue

These examples point out that levels of nesting in logical expressions can be tricky. In general, 
we recommend not including more than one logical operator in a Boolean expression. If more are 

needed, we recommend using nested If statements instead, as described in the next section.



256

Figure 6-1-6. The complete code for the shootBolt method



257

Nesting If statements

One problem in our Zeus world still exists! In testing the animation, we discovered that clicking 

on a philosopher who has already been shot by a thunderbolt results in Zeus shooting another
thunderbolt at the “already-fried” philosopher. (That seems like a waste of energy.) How can we 

prevent this from happening? One solution is to use another If statement, allowing Zeus to only 
shoot a thunderbolt at a philosopher who isn’t already frizzled.  Because each philosopher object 
is turned a black color (to show the effect of being hit by lightening), we can use the color 

property to determine whether the object has already been struck by lightening. The process of 
creating the question to test the color of the who parameter is a three step process. First, the If 

statement is added to the code. Then, one of the object’s color property (we arbitrarily chose 
Plato) is dragged into the If statement and an = = question is asked to determine if the color is 
black.

Finally, the who parameter is dropped on top of Plato to allow the color of any philosopher 
object to be checked.

The completed code is illustrated in Figure 6-1-6.

Else

Code has also been added to the Else parts of the If statements. In case the user clicks on an 

object other than one of the four philosophers, Zeus says, “I only shoot at philosophers,” and if 
the user clicks on a philosopher who has already been hit by a thunderbolt, Zeus now says “The 

philosopher is already fried!!!”

Relational operators

In the Zeus world, we made use of the = = relational operator. If statements often depend on 

relational operators so this is a topic we should explore a bit further.  It is often the case that we 
would like to compare two numbers, and execute code if a certain relationship exists between 

those numbers. For example, if a boy’s height is at least 4 feet (approximately 1.3 meters), then 
he should be allowed to ride a roller coaster. Alice provides six world- level relational operators 
grouped together in the math category of world-level questions, as illustrated in Figure 6-1-7.



258

Figure 6-1-7. Relational operators

These operators allow us to compare two numbers in six different ways!  While “= =” means “is

equal to,” the “!=” operator means “is not equal to.”  To create a logical expression (one that 

returns true or false) that asks the question whether the “boy’s height is at least 1.3 meters” is a 
two-step process.

1) Drag the “a >= b” tile into an If statement, and enter a value of 1 for a and 1.3 for b.

2) Then, drag the boy’s height question over the leftmost number.



259

6-1 Exercises

1. Modifications to the Zeus world

Modify the Zeus world to make each philosopher say something different when clicked. 
a) Euripides says “Come on guys, I wanna to take a bath.” 

b) Plato says, “I call it… Play Doe” and then extends his right hand to show the other 
philosophers his Play Doe. 

c) Homer says, “By my calculations, pretzels go extremely well with beer.”

d) Socrates says “Like sands in the hour glass, so are the days of our lives.”
Use an If statement to determine which philosopher was clicked and have the appropriate 

philosopher philosophize.

2. More modifications to the Zeus world

Modify the Zeus world so that if Homer gets clicked and zapped by the thunderbolt, he he falls 
over, says “d’oh”, and then stands back up again (instead of turning black). Allow repeated 
clicking on Homer, which should result in his repeated falling down and getting back up.

3.  PracticeTurns

Create a skater world, as illustrated below.  Import a CleverSkater object, as designed and 
created in Chapter 4. (If you have not created the CleverSkater character, an iceSkater object can 
be used from the gallery but you will have to write your own methods to make her skate forward 

and skate around an object.)



260

In this world, the skater is practicing turns on the ice. The skater will point at the cone and then 

skate forward toward the cone (a sliding step on one leg and then a sliding step with the other 
leg). When she gets close to a cone, she skates half way around the cone and ends up facing the 

other way to skate back towards the other cone. Then, she skates toward the other cone and when 
she gets close enough makes a turn around it.  To find out whether the skater has gotten close
enough to a cone to do a half circle turn around the cone, you can use the “is within threshold of 

object” question for the IceSkater object.  Another possibility is to use the “distance to” question 
and the relational operator a < b (available as a world- level question)  to build the logical 

expression “is the skater’s distance to the cone is less than 2 meters?” Write your program to 
make the skater complete a path around the two cones.

5.  FigureEight This exercise is an extension of exercise 3 above.
Modify the world to have the skater complete a figure 8 around the cones.

6.  IceDanger

For this exercise, you can begin with a world constructed in either exercise 4 or 5 above – or 

create a new skater world from scratch.  Add a hole in the ice (a blue circle). 

Make the world interactive to allow the user to use the mouse to move the hole around on the icy 
surface.  (See Tips & Techniques for using the let mouse move objects event.) Now, as the skater 

is moving across the surface of the ice, the user can move the hole into the skater’s path.  Modify 
your method that skates the skater forward to use an If statement that checks whether the skater 
is skating over the hole. If she is on top of the hole, she will drop through the hole.  If you have

sound on your computer, you may want to add a splash sound that plays when the skater falls 
through the ice.

7. TallTrees

Create a world with an Alice object (or some other object positioned between two tall trees). 

Animate Alice walking back and forth between the two trees.  Make the world interactive so 
Alice takes a step each time the user presses the enter key. Alice should walk until she reaches a 

tree, then turn around to walk back toward the other tree. When she gets to the second tree, she 
should turn around to walk back towards the first tree.  Be sure to avoid Alice colliding with one 
of the trees.



261



262

6- 2 User-defined Questions I (Boolean)

Introduction to Questions

Alice uses the term question to refer to a program construct known in many other programming 
languages as a function.  A question (function) may receive values sent in to parameters (input), 

perform some computation on the values, and return (send back) a value as output. In some 

cases, no input is needed – but, generally values are sent in. The diagram in Figure 6-2-1
outlines the overall mechanism. One way of thinking about a question or function is that it is 

something like an old fashioned jukebox. You put coins in the machine and select a song. The 
machine loads the recording and sends the music out through speakers for you to enjoy. 

Actually, you have been using functions all your life, in many cases never thinking about it. For 
example, a cash register at a supermarket acts as a form of function. The cashier enters (as input)
the prices of each of the items you are going to purchase, the cash register computes a sum and 

adds on the tax, and the cash register returns (as output) the total cost of all the items. 

Figure 6-2-1. The functionality of a question

Abstraction

As with character- level and world- level methods, one of the important benefits of a question is it 

allows us to think about the overall process rather than all the nitty-gritty little details.  When we 
use a cash register, for example, we think about finding the cost of a purchase – not about all the 

additions that are going on inside the machine. In the same way, we can call a question in our 
program to perform all the small actions. But, we just think about what we are going to get when 
the question returns the answer. Like methods, questions are an example of abstraction –

collecting lots of small steps into one meaningful idea to allow us to think on a higher plane. 

User-defined questions

We have already used some of Alice’s built- in questions. In the Zeus world, we used a question 
to get the cloud’s position so the thunderbolt could move to a precise location. Also, the ==
question was used in the Zeus world to test whether the object clicked by the user was a 

philosopher or not. But, sometimes we would like to use a question that does not already exist in 
Alice. This is when we want to write our own questions. We will call the questions we create 

user-defined questions  because we are using the Alice system to define questions.



263

Creating a new Question

To create a user-defined question, select the World (for a world-level question) or an object (for 

a character- level question) in the object tree. In the questions tab of the details pane, click on the 
“create new question” tile, as in Figure 6-2-2.

Figure 6-2-2. Create new question tile

A popup New Question box, see Figure 6-2-3, allows you enter the name of the new question 
and select its type. As with built- in questions, a user-defined question is categorized by the type 

of information it returns.

Figure 6-2-3. Types of user-defined questions

In this section, we look at writing questions that return a Boolean value (true or false). Boolean 
questions are logical expressions often used in If statements. In the next section, we will examine 
questions that return a value that is not Boolean.

Writing a simple Boolean question

Consider the pond scene in Figure 6-2-4. A worker bee is scouting for new sources of pollen for 
the hive. He is checking out the flowers surrounding the pond. In our animation, we want to
write a method that will have the bee fly over to the nearest flower. There are two flowers, a red 

flower and a pink flower, that are possible choices. But there is no built- in question in Alice that 



264

returns whether one object is closer than another object. So, a user-defined, world- level question 
is needed. 

Figure 6-2-4. An initial pond scene

This question will use three parameters for input values: the comparing object (the bee), and two 

objects to test which one is closer to the comparing object (the red flower and the pink flower). A 
possible storyboard for the user-defined question is:

The question will return true if the first object is closer to the bee than it is to the second object, 

and false otherwise. A new question named isFirstCloser is created in the World questions tab 
of the details pane and the code is entered in the editor. The code is shown in Figure 6-2-5.

Figure 6-2-5. A user-defined question to return true if the first object is closer

Parameters: comparingObject, FirstObject, secondObject

If  comparingObject’s  distance to firstObject is less than
comparingObject’s  distance to secondObject
           return true

Else

return false



265

Notice that the big difference between a method and a question is that the question must end with 
a Return statement. It is the Return statement that provides an answer each time the question is 

asked.  If the Return statement is not written as part of the question, Alice will not be able to 
send back an answer the question.

Calling the question

Once the question has been written, it may be invoked from another method as illustrated in 
Figure 6-2-6. Depending on which flower is closer to the bee, the bee will turn and point at the 

appropriate flower, and then fly over to it.

Figure 6-2-6. Calling the user-defined question

When user-defined questions are designed, it is often the case that we want to make the question 
somewhat generic. That is, we might want to use the same question with different objects. In this 

example, the isFirstCloser question can be used to test which of any two objects is closer to any 
comparing object. For example, we could use the question to find the nearest of two horses so a 

cowboy could stride over and hop aboard the nearest horse.

A more complex Boolean question 

A biplane and a helicopter are flying in the same flyspace at approximately the same altitude, as 

in Figure 6-2-7. When two vehicles are in the same flyspace, a collision is possible. We want to
write a question that can be used to find out whether the objects are in danger of collision. If the 

objects are too close to one another, the biplane can invoke a method to avoid collision.

Figure 6-2-7. Flyspace collision danger



266

One factor in determining whether two aircraft are in danger of collision is to use a height 
differential (the relative heights of the two objects above the ground). In this example, the 

question will be designed to return true if the height differential is less than 10 meters (an 
arbitrary value). Otherwise, the question will return false. A possible storyboard is:

In this storyboard, the two objects (whose heights are to be compared) are passed to the question 
as parameters. Three possible conditions spell danger:  the two aircraft can be at the same height, 

the biplane can be above the helicopter and within 10 meters of it, or the helicopter is above the 
biplane and within 10 meters of it.  If any one of these conditions is true, the question will return 

true. If none of these cases are true, the question will return a default value of false. The code for 
the user-defined Boolean question is presented in Figure 6-2-8.

Parameters:  firstObject, secondObject

If firstObject height is equal to secondObject height

    return true
Else do nothing
If firstObject is above the secondObject and its height above the secondObject < 10

return true

Else do nothing

If secondObject is above the firstObject and its height above the firstObject < 10
   return true
Else do nothing

return false



267

Figure 6-2-8. A question with multiple If statements for multiple conditions

The code for this question consists of three consecutive If statements. The first statement for 

which the condition is true will return the value true and the question will be done. To be more 
explicit, we think about the code executing like this: 

• If the first condition is true, the question will return the value true and the remaining two 
If statements will not be executed.  If the first condition is false, the second If statement

will execute next. 

• If the second condition is true, the question will return the value true and the remaining If

statement will not be executed. If the first and second conditions are both false, the third 
If statement will execute next. 

• If the third condition is true, the question will return the value true and the question will 

end.

• Finally, if all three conditions are false the question will fall through to the very last 

return statement and the question will return false.

Some programmers prefer a cascading style for writing successive If statements, as illustrated in 
Figure 6-2-9.  The code works exactly the same, but the If statements are nested one within the 
other.  In the cascading style for writing the code, we think about the code executing like this:

If the first condition is true, return true.
    Else, if the second condition is true, return true.

                     Else, if the third condition is true, return true.
                         Else return true.



268

Figure 6-2-9.  Cascading style – nested If statements

6-2 Exercises

1. Creating a question for the Zeus world

This exercise is a modification of the Zeus world from section 6-1. Create a Boolean question, 

isPhilosopher, that receives the clicked object as a parameter, and returns true if the object is one 
of the four Greek philosophers, and false otherwise. Then, modify the shootBolt method to use 

the isPhilosopher question to determine whether Zeus should shoot a thunderbolt at the clicked 
object.

2. Switch

Create a world using a Switch object (Controls folder of the gallery).  Write a method called 
FlipSwitch and an event/behavior so that when the Switch is clicked, its handle will flip from up 
to down or down to up.  Also, write a user-defined Boolean question IsHandleUp which returns 

true if the handle is up and false if it is down. (FlipSwitch will call IsHandleUp to deicide 
whether to turn the handle forward ½ revolution or backwards ½ revolution.) Hint: To write 

IsHandleUp, some reference point is needed to test the handle’s position.  One way to do this is 
to put an invisible sphere underneath the switch and if the handle is moved down, the sphere 
should move up and vice versa.  (See Tips & Techniques 5 for details on moving an object 

relative to an invisible object.)



269

3. LightBulb

Create a world with a lightbulb and a method TurnOnOff that turns the lightbulb on/off 

depending on whether it is already on/off.  When the lightbulb is on, its emissive color property 
has a value of yellow. When the light bulb is off, its emmisive color is black. Write a Boolean 

user-defined question IsLightOn that returns true if the light bulb is on and false if it is off.
When clicked, the lightbulb should turn on/off.

4. SnakeOnTheMenu

Create a world that contains a goldfish and a snake in the water.  Your initial scene should look 

something like the image below. The fish is hungry and the snake looks like a good menu item.
The goldfish is to move forward a random distance when the user hits the space bar.  If the fish is 

within 1 meter of the snake, the goldfish will eat the snake. Otherwise, the snake will randomly 
move forward.

Hints: To make it look like the fish has eaten the snake, make the snake disappear by setting its 
isShowing property to false. Try setting the camera’s vehicle to the snake to keep the characters 

from moving out of sight.

5.  FrightenAwayTheDragon 

Create an initial scene of a troll and a dragon as shown below.  The troll is trying to frighten 
away the dragon from his favorite hunting grounds. But, the troll is smart enough to not get too 

close to the dragon. The troll is to rant and rave while moving toward the dragon if the two are 
more than 5 meters apart.  The troll should move toward the dragon every time the space bar is 



270

pressed.  Use a user-defined question to find out when the troll gets too close to the dragon. 
When the troll is less than 5 meters away from the dragon, have the dragon fly away. 

6. ZombieWorld

Create a world with a zombie and an open grave (a black square on the ground). In a scene from 
a scary movie, the zombie walks forward toward the grave and falls in. In this animation, every 

time the user presses the space bar, the zombie should walk forward.  A Boolean question named 
aboveGrave that returns true if the zombie is within ½ meter of the grave. When the question 

returns true, make the zombie fall in.



271

6-3 User-defined Questions II (Number)

Other types of questions

As you know, the type of a user-defined question is based on the kind of value it returns. Types 
of questions include number, Boolean, object, and others such as string, color, and sound. In 

sections 6-1 and 6-2, we wrote user-defined Boolean questions that return logical (true or false) 
values. Boolean questions (logical expressions) are quite useful in If/Else statements. Let’s take a 
look at how to write user-defined questions that return other kinds of values.

User-defined number question

We have used built- in questions that return a number value. For example, we used the distance to
question to find the distance between two objects. Questions that return a number value will be 
useful in many situations. For example, we might want to write a question the returns the number 

of visible objects on the screen in an arcade-style game. The question would be called to keep 
any eye on how many objects the user has eliminated (made visible). When only a few objects 

are left, we might decide to speed-up the game. 

It’s always helpful to begin with a simple example. To illustrate a number type of question, let’s 

consider a toy ball, as seen in Figure 6-3-2. To simulate rolling the ball sounds like a simple 
enough idea. (Don’t be deceived … this is more challenging than it looks.) Think about how the 

ball can be made to roll to its right.  The important part of this action is that the ball should 
appear to roll along the ground, not just glide forward.  (A gliding motion is fine for an ice 
skater, but a ball should look like it is rolling.)   An obvious instruction to try is a roll instruction.

Surprise – the roll instruction simply rotates the ball in place. It spins the ball around, but the ball
does not move to its right along the ground! 

Figure 6-3-2.  A toy ball

To make the ball actually roll, two actions are needed: the ball must move right and also turn in 
the same direction.  With this in mind, turn and move instructions are placed in a Do together
block in Figure 6-3-3.

Figure 6-3-3. Move and turn together instructions



272

But, testing this code is also disappointing. The effect of the two instructions enclosed in a Do 
together block is that the ball rolls forward and turns at the same time – but no progress is made 

in the forward direction.  Why is this?  Well, when two actions are combined in a Do together
block, they do not necessarily act in the same way as when the actions occur sequentially.  In this 

example, the forward movement combined with the turn causes the turn to occur in a larger spin 
area but the ball does not end up moving to its right at all, as can be seen in the sequence of 
snapshots in Figure 6-3-4.

a) Starting position b) 1/3 of the way through

c) 2/3 the way through d) Ending position

Figure 6-3-4.  Move and turn together sequence of snapshots

One solution to this problem is "asSeenBy".  The desired effect is to have the ball move along the 

ground.  So, the ground seems a likely object to use as a reference for "asSeenBy." An example 
of the code is shown in Figure 6-3-5.  This code moves and turns the ball forward 1 meter in a 

pleasing simulation of a real- life ball rolling on the ground.

Figure 6-3-5.  Ball moves asSeenBy the Ground



273

The ball was made to move forward only one meter.  Suppose the ball is to move forward 10 

meters.  We must now think about how many revolutions the ball needs to turn so as to cover a 
distance of 10 meters in a forward direction. Creating a realistic rolling motion that covers a 

given distance is challenging because the number of times the ball needs to turn is proportional 
to the diameter of the ball.  To cover the same forward distance along the ground, a small ball 
turns forward many more times than a larger ball.  In Figure 6-3-6, the larger ball covers the 

same distance in one revolution as the smaller ball covers in four revolutions.

Figure 6-3-6.  Distance covered by a revolution is proportional to diameter

Of course, the number of revolutions needed for the ball to roll 1 meter to its right could be 
found by trial and error.  Or, the number of revolutions could be hand calculated, using the 

formula:

number of revolutions = distance / ( diameter * Π    )

But, every time the ball is resized or the distance the ball is to roll changes, this computation 
would have to be done again and the code would have to be modified. This is where a number 

type question would be helpful. Since we are only concerned with the toy ball rolling and no 
other objects are involved, a character-level question is appropriate. (A character- level question 

has the advantage that if we wish to calculate the amount the ball needs to roll in some other 
world, we can save out the toy ball character and then reuse our toy ball in future worlds.)  Begin 
by selecting the toyball object from the object tree, and selecting the “create new question” tile 

in the questions tab. In the New Question box, the name howManyRotations is entered and the 
type Number is selected, as shown in Figure 6-3-7.

Figure 6-3-7. Naming and selecting the type for a number question

one revolution

four  revolutions



274

The code shown in Figure 6-3-8 illustrates the question toyball.howManyRotations. The code 

implements the question: "How many rotations does the Ball have to make to move a given 
distance along the ground?"  The parameter is the distance the ball is to move. The number of 

rotations is computed by dividing the distance the ball is to move by the product of the ball's 
diameter (toyball's width, a built- in question) and pi (3.14). The computed value is the answer to 
the question. The Return statement tells Alice to send back the computed answer.

Figure 6-3-8. toyball.howManyRotations question

In number type questions, the order of evaluation of the values in the question must be carefully
arranged. Alice uses nested tiles in the same way we would write a mathematical computation 

using parentheses. The expression on the most deeply nested tile, “3.14 * subject = toyball’s 
width,” will be computed first. Then the distance will be divided by that computed result.

Testing

Now that the toyball has a question named howManyRotations, the question can be used in a 
program.  In Figure 6-3-9, a sample test is shown. An (arbitrary) distance of 3 meters is used for 

the move forward instruction and to provide the distance parameter for the 
toyball.howManyRotations question.  This test should be repeated with low distance values (for 

example, -2 and 0) and also with high distance values (for example, 100). Using a range of 
values will reassure you that your question works on many different values.

Figure 6-3-9.  Testing howManyRotations Question

Using a question with a relational operator

If the distance is small and the ball is large, the ball may not turn a full revolution – and then it
would not look like it was rolling at all. How can we force the ball to turn right at least one 

revolution? One solution is to use an If statement to check the value of howManyRotations. If 
howManyRotations is less than one, make the ball turn a complete revolution. Otherwise, the ball 

will turn howManyRotations, as above. Figure 6-3-10 shows the modified code using a call to 
toyball.howManyRotations as part of a logical expression. The less than relational operator is 



275

used to compare the value returned by howManyRotations to one.  The result of this comparision 
is true or false and determines whether the toyball makes 1 revolution or several revolutions.

Figure 6-3-10. Calling a question as part of a logical expression

Abstracting a character-level method

The discussion above has led to the development of a very realistic rolling ball action.  Of 

course, the rolling action is composed of several small steps and the calculation of an answer to a 
question. In building a larger world where the rolling ball is only a small part of many actions 

allows you to think about these actions as one overall action: "a realistic roll of the ball." We can 
abstract this action by putting the code into a method and giving it the name realisticRoll. Only 
the ball is involved in realisticRoll, so this will be a character- level method.  The code for 

realisticRoll is shown in Figure 6-3-11. Note that toyball.realisticRoll has a parameter 
howFarToRoll and calls the question toyballlhowManyRotations in the same way as in the 

testing statements used in Figures 6-3-9 and 6-3-10.

Figure 6-3-10. Character-level method toyball.realisticRoll

World-level question for generic use

In the toyball example, a character- level question and a character- level method were developed.
But, it is clear that the question to compute the number of rotations for a ball might be used on 
any kind of spherically-shaped object.  This brings up one very good reason for writing a world-

level question:  a question that could be asked of any object having similar properties.  To write a 
generic kind of question similar to howManyRotations for any spherically-shaped object, two 

parameters are needed:  the distance to roll the spherical object and the diameter of the sphere.
The reason for distance to roll is the same as it was for the toyball.howManyRotations method.
But, the reason for the diameter parameter is that this method is intended to be generic (work for 



276

any spherical object). So, the diameter of the spherical object must be sent in for the computation 
of the number of times the sphere is to rotate.  Otherwise, Alice would not know which spherical 

object's diameter to use for the computation.

Figure 6-3-11.  Generic world-level question



277

6-3 Exercises

1.  AcrobatsWithRollingBall

Begin by creating a world containing the toyball (resized to twice its original size) and two 

characters/acrobats of your own choosing. Position the acrobats on top of the ball. Use the scene 

editor quad view to be certain the acrobats are standing directly on top of one another and 

are centered on the ball. Also, use a one -shot instruction on each acrobat and on the ball to 

orient each object to the center of the world. (See Tips & Techniques 3. Using orient to will 
ensure the objects are synchronized for movement together.)

Create an animated circus act, where the acrobats move with the ball, staying on top of it, as the 
ball rolls. The acrobats should put their arms up half way, to help them to balance!

2. BeeScout

This exercise is a variation on the bee scout animation presented in section 6-2. It has been a hot, 
dry summer and a hive of bees is in desperate need of a new supply of pollen. One bee has 
ventured far from the hive to scout for new pollen sources. A natural place to look is near ponds 

in the area. Set up the initial scene with a circle flat on the ground and colored blue to look like a 
pond. Add plants, trees, and other natural scenery including some flowers.  Be sure the bee is 

located somewhere around the edge of the pond, as shown in the screen shot below.



278

Write a program to animate the bee scouting the edge of a pond for flowers that are in bloom. 
The bee is to fly around the perimeter of the pond (circle).  Write a method to make the bee scout 

around the perimeter of the pond in which the circumference of the circle is used to guide the 
motion. (Yes, asSeenBy could be used – but that is not the point of this exercise.) The formula 

for computing the circumference of a circle is PI * the diameter of the circle.  PI is 3.14 and the 
diameter is the object’s width.  Write a question that computes and returns the circumference of 
the circle.  Then, have the bee fly around the perimeter of the pond by moving forward the 

amount of meters returned by the circumference question while turning left one revolution.

3. PyramidClimb

On spring break, a student is visiting the land of the Pharoahs.  The student decides to climb one 
of the pyramids. He/She will start at the bottom and move straight up the side.  Set up an initial 

scene consisting of a person and a pyramid, as shown in the screen shot below. Write a method 
to animate the climb of the adventuresome student up the side of the pyramid so the person’s feet 

are always on the side of the pyramid.

Prepare the person for climbing the pyramid by pointing the person at the pyramid and walking 

him/her up to edge. Then, turn the person about 1/8 of a revolution so as to lean into the climb.
(Play with this leaning movement until you get a reasonable angle for the person to climb the 
pyramid.) While the person is climbing the pyramid have the person in a leaning position. After 

reaching the top, the person should stand up straight.

To determine how far the person must move to climb up the side of the pyramid, the climb
method must call a question. The question computes the side length of the pyramid. The formula 
for computing the distance up the side of the pyramid is based on the Pythagorean theorem (a2 + 

b2 = c2).  Actually, the value that is needed is the value of c, which will provide a rough estimate 
of how far the person should move (in a diagonal direction) up the side of the pyramid.  The 

formula is:
length of the pyramid’s side = v( (pyramid’s height) 2 + (pyramid’s width/2) 2 )

c a

b/2



279

6 Summary

This chapter introduced the fundamental concepts of If statements and user-defined questions 

(functions). The If statement plays a major role in most programming languages as it allows for 
the conditional execution of a segment of code. The key component of an If statement is a 

Boolean condition that returns a true or false value. Boolean conditions are also referred to as 
logical expressions. A Boolean condition is used in an If statement to determine whether the If
part or the Else part of the statement will be executed at runtime. Thus, an If statement allows us 

to control the flow of execution of a segment of our program code.

To demonstrate the flexibility of Boolean conditions, we started with a simple condition that 
called a built- in question. Then, we used logical operators to build much more complicated
Boolean conditions. 

Built- in questions do not always meet the particular needs of a program. In this chapter, we 

looked at how to write our own user-defined question that returns a Boolean value (true or false). 
Then, other types of user-defined questions were introduced. The benefit of writing our own 
user-defined questions is that we can think about the task on a higher plane – a form of 

abstraction. User-defined questions that compute and return a number value make writing code 
much cleaner because the computation is hidden in a question, rather than cluttering up the 

method where the result of the calculation is needed.  By using parameters in user-defined
questions, we can make the questions generic to use the questions with different kinds of objects.
Character- level questions can be defined and saved with the object to allow us to reuse the 

question for that object in another program.

Important concepts in this chapter

• An If statement is a block of program code that allows for the conditional execution of 

that segment of code.

• An If statement contains a Boolean condition (logical expression) used to determine 

whether the segment of code will execute. 

• If the Boolean condition evaluates to true, the If part of the statement is executed. If the 

expression evaluates to false, the Else part of the If statement gets executed.

• Boolean conditions may call built- in questions that return a true or false value.

• Logical operators (and, or, not) can be used to combine simple Boolean conditions into 
more complex expressions.

• Relational operators (< , > , >= , <= , = =) can be used to compare values in a Boolean 
expression.

• User-defined questions can be written to return a Boolean value and used in If statements. 

• User-defined questions can also be written to compute and return other types of values.



280

6 Projects

1.  Gatekeeper

Build a world with any four different characters of your choice (people, shapes, vehicles, etc.).
Position the four objects in a lineup. The characters are facing the player and are spaced equally 

apart from one another.

In this game, one of the characters is a gatekeeper, holding a secret password to allow the user to 

open a hidden door into the pyramid. To find the secret password, the user must rearrange the 
objects in the lineup until the gatekeeper is in the position on the far right of the lineup.  (If the 
objects in the lineup are counted from left to right, 1 – 2 – 3 – 4, the gatekeeper must be moved 

into position 4.) When an object is clicked, it switches position with the character farthest from 
it, 1 and 4 will switch with each other if either one is clicked, 3 will switch with 1 if clicked, and 

2 will switch with 4 if clicked).  Make one of the objects (in position 1, 2, or 3) the gatekeeper.
You must use a programmer-defined Boolean question that returns true when the objects in the 
lineup have been rearranged so the gatekeeper is on the far right of the lineup and false if it is 

not.  When the gatekeeper is in position, display a 3D text object containing the password.

2. BinaryCodeGame 

Build a world with three switches and a lightbulb, as seen below. Beneath the lever on each 
switch put an invisible sphere.  Set the emissive color of the lightbulb to black (turned-off).

In this game, the positions of the levers on the switches represent a binary code. When a lever is 
up, the lever represents 1 (electric current in the switch is high) and when a lever is down, the 
lever represents 0 (electric current in the switch is low). In the above world, all three levers are 

up so the binary code would be 111. The correct binary code is randomly chosen at the 

beginning of the game. (Use the world- level random number question.) The idea of this game is 
to have the user try to guess the correct binary code that will light up the lightbulb (its emissive 
color will be yellow). To guess the binary code, the user will click on the levers to change their 

position.  Each time the user clicks on a lever the handle of the lever moves in the opposite 



281

direction – up (if currently down) or down (if currently up).  When all three switches are in the 
correct position for the binary code, the lightbulb will turn on.

Each switch should respond to a mouse-click on a lever. If the lever is down, flip it up. If the 

lever is up, flip it down. To track the current position of the lever on a switch, an invisible sphere 
can be placed on the switch and moved in the opposite direction as the lever each time the lever 
is moved. When the sphere is below the lever, the lever is in an up position. When the sphere is 

above the lever, the lever is in a down position, as shown below. At the same time the lever 
changes position, the sphere should also move.  That is, as the lever moves up the sphere moves 

down and vice-versa.

Lever up, Sphere below Lever          Lever down, Sphere above Lever

Your project code must include a Boolean question that determines whether a switch lever is in 

the up position. (Use an object parameter that specifies which switch is to be checked.) Also, 
include a Boolean question that determines whether the Boolean code is correct. Hint: use the 
color of the spheres (even though they are invisible) as a flag that indicates the correct position 

of the lever.

3. DrivingTest

Create a world that simulates a driving test.  The world should have a car, 5 cones, and a gate.
Set up your world as shown in the image below. Also, create two 3D text phrase objects “You 

Pass” and “Try Again”.  Set the isShowing property of each text phrase object to false, so that 
they are not visible in the initial scene.

In this driver test, the user will use arrow-key presses to move car forward, left, or right to 
swerve around each of the five cones so as to avoid hitting a cone.  If the car hits one of the 

cones, the driver fails the test, the car stops moving and the "Try Again" text object is made 
visible.  If the user manages to steer the car past all 5 cones, the car should drive through the gate 

and the "You Pass" text object made visible.   Write a user-defined question named tooClose that 
checks the car’s distance to a cone.  If the car is within 2 meters of the cone, the question returns 
true.  It returns false otherwise. Also, write a question named passedTest which evaluates if the 

user has passed the test. This is recognized by the fact that the car has been driven past the gate.



282

Hints: Work under the assumption that the user will not cheat (i.e. pass all the cones and head 
straight through the gate).  Due to the differences in the width and depth of the car, do not be 

concerned if part of the front or back of the car hits a cone.

4. PhishyMove

Phishy fish has just signed up at swim school to learn the latest motion, the Sine Wave.  Your 
task is to write a method to teach her the sineWave motion.  The initial scene with a fish and the 

ground modified to look like water is seen below. 

Note: This world is provided on the CD that accompanies this book. We recommend that 
you use the prepared world, as setting up the scene is time consuming. If you are an 

adventuresome soul, here are the instructions for setting up the world on your own:  Use one-
shot instructions to move the fish to the world origin (0,0,0) and then turn the fish right ¼ 

revolution. Because Phishy is partially submerged in the water, set the opacity of the water 
(ground) to 30% so the object can be seen in the water. Now, use camera controls to re-position
the camera (this takes a bit of patience as the camera must be moved horizontally 180-degrees

from its default position). Then, adjust the vertical angle to give a side view of Phishy in the 
water, as seen above. The fish should be located at the far left and the water should occupy the 

lower half of the world view, as seen in the screen shot above.

Alice has a sine question that can be used to teach Phishy the sineWave motion. (The sine 

question/function is often used to determine the relationship between the lengths of the sides of a 
right triangle. For the purposes of this animation, the relationship of the lengths of the sides of a 

right triangle is not really important. )  If  the sine function is computed over all angles in a full 
circle, the sine value starts at 0, and goes up to 1, back through 0 to -1 and returns to 0: 

Angle Sine of the angle

0 0

45 0.707

90 1

135 0.707

180 0

225 -0.707

270 -1

315 -0.707

360 0



283

This function is continuous, so if sine values are plotted some multiple of times, we will see the 
curve repeated over and over, like so: 

Sine wave

For the sineWave motion, Phishy is to move in the sine wave pattern. In the world provided on 
the CD, Phishy has been positioned at the origin of the world. In a 2D system, we would say she 
is at point (0,0). To simulate the sine wave pattern, she needs to move up to height that is 1 meter

above the water, then down to a depth of 1 meter below the surface of the water (-1 meter), back 
up to 1 meter above the water, and so on. Of course this up-and-down motion is occurring at the 

same time as she moves to the right in the water.  The Alice sine question expects to receive an 
angle expressed in radians (rather than degrees). Write a question, named degreesToRadians,
that will convert the angle in degrees to the angle in radians. To convert from degrees to radians, 

multiply the angle degrees by PI and divide by 180. The degreesToRadians question should 
return the angle in radians.

Now, write a method to have Phishy move in the sine wave pattern. Remember that in the world 
provided on the CD, Phishy has already been positioned at the origin of the world. So, Phishy is 

already at the position for 0 degrees.

Hint: One way to create the sine wave pattern is to use moveTo instructions (see the Tips and 
Techniques section of this chapter). A moveTo instruction should move Phishy to a position that 
is (right, up, 0), where right is the radian-value and up is the sin(radian-value). Use moveTo

instructions for angles: 45, 90, 135, 180, 225, 270, 315, and 360. For a smoother animation, 
make each moveTo instruction have style = abruptly.

5.  CosineWave

Teach Phishy how to move in a cosine wave pattern, instead of the sine wave pattern as 

described in project 4 above.



284

Tips & Techniques 6

If/Else and visibility as a condition

In game-type programs, it is frequently the case that objects are made invisible. Look at the 

futuristic space scene below where a spaceship will "cloak" to hide from an alien spacecraft. 
Cloak is a science fiction term describing the ability of a spaceship to camouflage itself into the 
celestial sky so it is not visible or detectable on an enemy radar screen.  Figures T-6-1(a) and (b) 

illustrate the space scene before and after the spaceship cloaks.

       Figure T-6-1(a) Space scene before Cloaking           (b) Space scene after Cloaking

As was explained in Tips & Techniques 4, Alice offers two ways to make an object invisible:

(1) set isShowing to false, and (2) set opacity to 0 %.  In this space world, the code to cloak the 
space ship might look like this:

In worlds where visibility is used as part of the animation, a convenient programming technique 
is to use the visibility of an object as a Boolean condition in an If statement.  That is, we might 

write something like:

What is not so obvious about the use of visibility in a Boolean expression is that your code must 
be consistent in its use of either isShowing or opacity. What we mean by this is:  if you use 



285

isShowing to change the visibility of an object, then use isShowing in the Boolean condition. Or, 
if you use opacity to change the visibility of an object, then use opacity to change the visibility of 

an object. Why is this?  The answer is that isShowing and opacity are two different properties 
that track different (though related) states of the object. isShowing is strictly true or false – kind 

of like a light switch that can be either on or off.  But, opacity is a more sliding scale kind of 
property expressed in percentages – kind of like a dimmer switch that can adjust the brightness 
of a light. Though it is true that when opacity is 0% the object is invisible, when you make an 

object have an opacity of 0%, Alice does not automatically make isShowing false. Likewise, 
when you make isShowing false, Alice does not automatically make opacity 0%.

The moral of this story is: If you use isShowing to make it invisible, use isShowing to check its 
visibility. And, if you use opacity to make an object invisible, use opacity to check its visibility. 

“And never the twain shall meet.”

Camera: View from the back 

Figure T-6-2 illustrates a fantasy world where objects have been added to the scene and 
rearranged somewhat to create an initial scene for an animation. From our perspective (as the 
person viewing the scene), the camera is allowing us to look at the scene “from the front.”

Figure T-6-2.  Fantasy scene 

In some worlds, you may want to move the camera around in the initial scene so it is viewed 

“from the back.”  The problem is: how do we get the camera to “turn around” so the back of the 
scene is in view?   One technique that seems to work well is to position the mouse cursor over 
the camera’s forward control, hold down the mouse and drag it forward. (The forward control is 

circled in Figure T-6-3). Continue to hold down the forward control and allow the camera and 
move straight forward until the camera seems to move right straight forward through the scene. 



286

Figure T-6-3. Forward camera control

When the camera seems to have moved to the other side of the scene, let go of the forward 

control. Select the Camera in the Object tree and use a one-shot instruction to turn the camera ½ 
revolution, as in Figure T-6-4.

Figure T-6-4.  A one-shot instruction to turn the camera around

The camera should now be facing in the opposite direction and you should be able to see the 
scene from the back, as illustrated in Figure T-6-4.



287

Figure T-6-5. View from the back of the scene

Lighting up the rear view

As you can see in Figure T-6-5, the rear view of the scene is somewhat disappointing. The scene 
looks rather dull because the built- in light object is shining so as to light up the scene from the 
initial camera point of view.  To improve the lighting for a rear-view screen capture, you can add 

a light bulb to the scene – drag it in from the Lights folder in the web gallery, as shown in Figure 
T-6-6. Wow – what a difference!



288

Figure T-6-6. Lighting added to rear view

You probably don’t want a light bulb in the middle of your scene. Use a one-shot instruction to 

move the light bulb up 10 meters.  The light bulb will be out of sight, but the scene will now 
have ambient light from both front and back views.


