
150

4 Character-Level Methods and Inheritance

The galleries of 3D models (characters) in Alice give us a choice of diverse and well-designed
kinds of objects for populating and creating a scenic backdrop in a virtual world. As you know,

each character object added to a world comes with a predefined set of actions it can perform –
move, turn, roll, and resize (to name a few). After writing several programs, it is natural to think
about expanding the actions an object “knows” how to perform.

In fact, we can add functionality to any character by writing a method specifically designed for

that kind of object to carry out. In object-oriented programming, methods that add functionality
to a particular kind of object (a class of objects) are called class-level methods. In Alice, we use
the term character-level because we think of a specific kind of object as a 3D character model.

This chapter will focus on character- level methods as methods designed specifically for one kind

of object. These methods are rather special because we can save the character along with its
newly defined method(s) as a new kind of character. The new kinds of objects still know how to
perform all the actions of the original character. In object-oriented languages, we would say that

the new kinds of objects (a derived class) inherit all the properties and actions of the original
objects (the base class). This concept is known as inheritance.

Once a new character has been saved, it can then be used later in a different program. Creating
new characters in this way offers an advantage in that we can reuse code in many different

programs.

Notes to instructors:
1) Creating a new character in Alice is not a complete implementation of inheritance.

When a new character model is created in Alice, the new character gets a copy of the properties

and methods of the base character model and this is saved in a new 3D model file. If you
subsequently change the base character model, the changes in the base will not be reflected in

derived character model.
2) Inheritance is accomplished in object-oriented programming languages via two

mechanisms: a) adding (or overwriting) methods, and b) adding extra state information via the

use of variables. This chapter will focus only on the former approach. Chapter 13 will introduce
the use of variables to add functionality to an inherited character. Because variables are not

visible/visual in the way the rest of the Alice environment is, variables per se are introduced
much later in the text, after students have developed a mastery of several other programming
concepts. See the preface for a more detailed discussion of our use of variables in Alice.

151

4-1 Creating New Characters

In the previous chapter, world- level methods were written to animate more than one object in a

scene, where the objects were interacting with one another in some fashion. This chapter will
focus on character- level methods. A major difference between world- level methods and

character-level methods is that a character level method is specifically designed for one kind of
object. The modified character can be saved out to create a new character.

Example

Consider the ice skater shown in the winter scene of Figure 4-1-1. We want the ice skater to
perform typical figure skating actions. It would be most convenient if the skater already knew

how to skate forward and backward and perform spin and axel movements. But, as with other
characters from the gallery, the ice skater only knows how to perform simple move, turn, and roll

actions. So, let’s write some methods to teach the skater how to perform more complex
movements. We begin with a method to make the skater perform a skate forward motion.

Figure 4-1-1. Ice skater

A Character-Level Method

Skating movements are complex actions that require several motion instructions involving
various parts of the body. A possible storyboard for a skate forward movement is shown below.
The storyboard breaks the skating action up into two segments – slide on the left leg and slide on

the right leg. Then, each segment is planned (a design technique known as stepwise refinement).
To slide on the le ft leg, the right leg is lifted and body rolled right. Then, the left leg is lowered

and the body is made upright. Similar actions are carried out to slide on the right leg. The sliding
actions are all taking place at the same time as the entire skater’s body is moving forward.

Do together

 Do in order

(Slide Left)

 Lift right leg and roll upper body right

 Lower right leg and return body upright

(Slide Right)

Lift left leg and roll upper body left

Lower left leg and return body upright

 Move forward 2 meters

152

This method is designed specifically for the IceSkater and involves no other kinds of objects.
Thus, instead of world- level, the method is written as a character- level method. IceSkater is

selected in the Object tree and the “create new method” tile is clicked in the details pane. skate is
entered as the name of the new method. (See Figure 4-1-2.)

Figure 4-1-2. Creating a skate character-level method

To implement the method, instructions are entered in the editor. Figures 4-1-3(a) and (b)
make up the definition of the skate method. The method name is IceSkater.skate (not

World.skate) – indicating that the method is a character- level method. While the method
looks somewhat complicated, you should not be intimidated by this code. It is actually quite

simple – a slide left followed by a slide right and the whole body moves forward.

Figure 4-1-3(a) illustrates instructions to slide on the left leg:

The right leg is lifted (by turning the right thigh forward), the upper part of the body
(abs) turned forward, and the head tilted (by rolling the neck left). A short wait is used

to allow the entire skater to move forward. Then, the right leg is lowered and the abs
and neck returned to their original positions (to prepare for the next leg slide).

Figure 4-1-3(b) illustrates similar instructions to slide forward on the right leg.

Note that left slide and right slide segments are each enclosed in a Do in order block. The

Do in order blocks are nested within a Do together block along with an instruction that
moves the skater forward simultaneously with the left and right sliding motion. The
duration of the forward movement of the skater is the sum of the durations of the left and

right slides so as to coordinate the sliding motions to begin and end at the same time as the
forward motion of the entire body. When the skate method is called, the skater glides

forward in a realistic motion.

153

Figure 4-1-3(a) Slide left

Figure 4-1-3(b) Slide right

154

A Second Example

The forward skate motion is truly quite impressive! Building on this success, let’s write a second

method to make the ice skater perform a spin. A storyboard for a spin could be as follows:

A character- level method can now be written with the storyboard as a guide. Figures 4-1-4 (a) –
(d) make up the definition of the IceSkater.spin method.

Figure 4-1-4(a) illustrates a DoTogether block of instructions to prepare the skater for a spin:

The left leg is lifted to the side by turning the left thigh left and then backward. Then,
the upper arms are rolled outward – away from the torso of the body.

Figure 4-1-4(b) illustrates a DoTogether block to move the left leg in and out as the body spins
around:

The left leg is bent at the knee by first turning the thigh left and then the calf backward.
After a short wait, the knee is unbent by reversing the thigh and calf movements.

Figure 4-1-4(c) continues the Do together loop started in Figure 4-1-4(b):
The arms are gradually returned to their starting position as the skater turns around and

around.

Figure 4-1-4(d) illustrates instructions to return the skater’s left leg to its starting position.

Once again, the code is a bit longer than methods we have written in previous examples.

But, it is important to realize that it is easily understood because the method has been
carefully broken down into small segments and each small segment of code within the
method has been well-documented with comments that tell us what the code segment

accomplishes as part of the method. Good design and comments sprinkled throughout the
method make our code easier to understand as well as easier to write and debug.

Do in order
 1. Do together
 (1) Lift left leg up in preparation for spin

 (2) Lift arms out to the side
 2. Do together

 (1) Bend leg (at knee) in and out during spin
 (2) Lower arms gradually as spin occurs

 (3)Turn skater around six times

 3. Lower left leg back to starting position

155

Figure 4-1-4. (a) Preparing for spin

Figure 4-1-4. (b) Leg in and out as skater spins

Figure 4-1-4. (c) Arms come in as skater spins

156

Figure 4-1-4. (d) Return left leg to starting position after spin

Saving a New Character

The IceSkater now has two character- level methods, skate and spin. Writing and testing the
methods took some time and effort to achieve. It would be a shame to put all this work into one
world and not be able to use it again in another animation program we might create later. This is

why we want to save an object and its newly defined methods as a new character. Saving the
IceSkater (with skate and spin methods) as a new kind of character is exactly what we want to do

– so we can use the IceSkater in other worlds and not have to write these methods again in
another animation program.

Saving an object (with its newly defined methods) as a new character is a two-step process. The
first step is to rename the object. This is an IMPORTANT STEP! We want Alice to save this

new character with a different 3D model filename than the original ice skater. To rename the
IceSkater, we right click on the IceSkater in the Object tree, and select rename. Then, type in a
different name. In Figure 4-1-5, we renamed the IceSkater as “CleverSkater”. (She has learned

some clever moves.)

Figure 4-1-5. Renaming IceSkater as CleverSkater

The second step is to actually save the CleverSkater: right click on CleverSkater in the Object
tree and this time select save object... In the Save Object popup box, navigate to the

folder/directory where you wish to save the new character, as in Figure 4-1-6, and then click the
Save button. The file is automatically named with the name of the object in the Object tree and

given a filename extension .a2c, which stands for “Alice version 2.0 Character” (just as the .a2w

extension in a world filename stands for “Alice version 2.0 World”).

157

Figure 4-1-6. Save object pop up box

Once the object has been saved as a new kind of 3D model character, it can be used in any world

by importing (use File�Import) the object into the scene. The CleverSkater will be just like
IceSkater except that a CleverSkater knows how to skate and spin.

Inheritance

In programming languages such as C++, Java, and C#, creating a new class (kind of objects)
based on a previously defined class is called inheritance. Inheritance in these languages is more

complicated than in Alice, as they offer different forms of inheritance. But, the basic idea is the
same – adding functionality to the base object by defining behaviors (methods) for a new kind of
object.

Benefits: reuse and teamwork

Inheritance is considered one of the strengths of object-oriented languages because it supports

reuse of code. Many programmers devote much of their time rewriting code they have written
before. But, inheritance allows a programmer to write code once and use it again later in a

different program.

A major benefit of creating new characters in Alice is that it allows us to share code with others

in team projects. If you are working on a project as a team, each person can write character-level
methods for one of the characters in the virtua l world. Then, each team member can save their

new character. As a team, a common world can then be created by adding all the new characters
to a single team-constructed world. This is a benefit we cannot stress enough. In the “real
world”, computer scient ists generally work on team projects. Building animation programs as a

team helps you develop skills in learning to work cooperatively with others.

Guidelines for Writing Character-level Methods

Character- level methods are a powerful feature of Alice. But, as with many powerful features in
programming languages, character- level methods have the potential for misuse. Below is a list of
“do's and don'ts” – guidelines to follow when creating character-level methods.

158

1. Do create many different character- level methods. They are extremely useful and helpful.
Some characters in Alice already have a few character-level methods defined. For example,

the lion character has methods startStance, walkForward, completeWalk, roar, and charge.
Figure 4-1-7 shows a thumbnail image for the lion character (from the web gallery), including

its character- level methods and sounds.

Figure 4-1-7. Character-level methods for lion

2. Do not play a sound in a character- level method unless the sound has been imported for the
character (instead of the world). A sound that has been imported for a character will be saved

with the character when a new character is saved, as can be seen in Figure 4-1-7.

3. Do not call world- level methods from within a character- level method. Figure 4-1-8 illustrates
CleverSkater.kalidoscope -- a character- level method that calls a world-level method named
World.changeColors. As explained earlier, an important motivation for creating character-

level methods is to create a new character (saved as a new 3D model) and use it later in other
programs for other worlds. If the CleverSkater object (with the CleverSkater.kalidoscope

method) is saved as a new character and is then added to a later world where the
World.changeColors method has not been defined, Alice will crash.

Figure 4-1-8. Bad Example: Calling a world-level from a character-level method

159

4. Do not use instructions for other objects from within a character-level method. Character-
level methods are clearly defined for a specific cha racter. We expect to save the object as a

new kind of character and reuse it in a later world. We cannot depend on other objects being
present in other programs in other worlds. For example, suppose a Penguin is added to our

winter scene and we define a character- level method named skateAround, as in Figure 4-1-9.
If we save the CleverSkater object (with the skateAround method) as a new kind of character
and then add a CleverSkater object to a later world where no penguin exists, Alice will crash

when we try to call the method.

Figure 4-1-9. Bad Example: Instructions for another object in a character-level method

Character-level Method With an Object Parameter

What if you are absolutely convinced that a character level method is needed where another

object is involved? One technique is to use an object parameter in the character- level method.
Let’s use the same example as above, where we want a CleverSkater object to be able to skate
around another object. The skateAround method can be modified to use a parameter, arbitrarily

160

named whichObject, as shown in Figure 4-1-10. The whichObject parameter is only a place-
holder, not an actual object, so we do not have worry about a particular object (like the penguin)

having to be in another world. Alice will not allow the skateAround method to be invoked
without passing in an object to the whichObject parameter. So, we can be assured that some sort

of object will be there to skate around.

Figure 4-1-10. Using an object parameter in a character-level method

4-1 Exercises

1. LockCombination

Create a world with a ComboLock. Create four character- level methods: leftOne, rightOne,

leftRevolution, and rightRevolution that turn the dial on the lock 1 number to the left, 1 number
to the right, 1 revolution to the left, and 1 revolution to the right, respectively. Then, create a
character-level method named Open that opens the lock and another named Close that closes the

lock. (Hint: Use an end Gently style to make the motion more realistic.) Rename ComboLock as
TurningComboLock and save it as a new kind of character.

161

Create a new world and add a TurningComboLock object to the world. Write a program that
turns the dial of the TurningComboLock object so it opens to the following combination: Left

25, Right 16, Left 3. However, when going Right 16, make sure that the dial turns one full
revolution by passing 16 once and stopping on it the second time. Then, pop open the latch,

close the latch and return the dial to zero. (Hint: Use wait to make the lock pause between each
turn of the dial.)

2. FunkyChicken

Starting with a basic chicken, create a character- level method walk that will have the chicken
perform a realistic stepping motion consisting of a left step followed by a right step. Then,

create a character- level method to make the chicken perform a “funkyChicken” dance motion.
Save the chicken as a new character named CoolChicken. Create a new world and add a
CoolChicken object to the world. In myfirstMethod, call the walk and funkyChicken methods.

Play a sound file or use a say instruction to accompany the funky chicken dance animation.

3. Samurai Practice

Create a world with a Samurai and write character methods for traditional Samurai moves. For
example, you can write RightJab and LeftJab (where the Samurai jabs his hand upward with the

appropriate Hand), KickLeft and KickRight (where he kicks with the appropriate leg), and
LeftSpin and RightSpin (where he does a spin in the appropriate direction). Save the Samurai as a
new character named TrainedSamurai. Start a new world and add two TrainedSamurai objects.

Create an animation where the two TrainedSamurai objects practice their moves, facing one
another.

162

4 Summary

Character- level methods were introduced as a special kind of method written specifically for one

type of object. An object for which character- level methods are defined may be saved as a new
type of object – using a different name than the base character model. The new character inherits
the properties and actions of the original character -- it is a fancy new model that knows how to

do more things than the base model. Comments and stepwise refinement were used to make
complex actions in character-level methods easy to understand and debug.

Some guidelines must be imposed for writing character- level methods. Only sounds imported for
the character should be played, world- level methods should not be invoked, and instructions

involving other objects should not be used.

A major benefit of defining new characters is we can use the characters over and over again in
new worlds to take advantage of the methods we have written without having to write them
again.

Important concepts in this chapter

• A character- level method is defined for a specific type of object.

• New character models can be created by defining character-level methods for an object

and then saving the character object with a new name.

• Stepwise refinement is a design technique where a complex action is broken down into

segments and then each segment is designed and implemented.

• Inheritance is an object-oriented concept where new kinds of objects (derived class) are
defined based on an existing kind of object (base class). In Alice, the existing 3D

models are like base classes and our new characters are similar to derived classes.

• Character- level methods can be written that accept object parameters. This allows a

character-level method to interact with another character. Otherwise, character- level
methods should avoid interaction with other characters.

163

4 Projects

1. CleverSkater

Create an even better CleverSkater than the one presented in this chapter. Start with the IceSkater
character from the People collection, create the character- level skateForward, spin, and

skateAround methods. In addition, create skateBackward and jump character- level methods. In
skateBackward, the skater should perform similar actions to those in the skateForward method,
but slide backward instead of forward. In a jump, the skater should move backward, bend and lift

one leg, then move upward (in the air) and spin around twice before gracefully landing on the ice
and lowering her leg back to its starting position.

Start a new world with a winter scene. Add your CleverSkater character to the world and create
an animation where the skater shows off her figure skating skills. (Call each of the methods you

have written.) Add a penguin and a duck to the world and use a parameter to pass the object the
skater is to skate around to the skateAround method.

2. Your Own Creation

Choose an animal or a person from one of the galleries. The character selected must have at least

two legs, arms, and/or wings that can move, turn, and roll. Write three character- level methods
for the object that substantially add to what this kind of object knows how to do. Save the new

character with a different name and then add it to a new world. Write an animation program to
demonstrate the methods you defined for this kind of object.

164

Tips & Techniques 4

Properties

Objects have properties where information (about the object) is kept. At the lower left of the

window in Figure T-4-1, the lilfish object properties are listed. Properties of objects include
color, opacity, vehicle, skin texture, and other values that tell Alice how to display and animate

the object.

Figure T-4-1. Object properties

Setting Properties at Runtime

Throughout this book, examples use one-shot instructions to set (change) properties of an object

at the time an initial scene is created. For example, we set the color property of the ground to
blue to make it look like water. This is section presents a tip & technique on how to change

properties while an animation is running. The technical term for “while an animation is running
is “at runtime.”

165

If you buy a new cell phone, you will take it out of the box and try out all the cool features of
your new phone – sort of a “poke and prod” kind of procedure. In the same way, you can learn

about properties of objects by taking a “poke and prod” point of view. To set a property at
runtime, drag the property tile into the editor and select the new value for the property. Alice will

automatically generate a statement in the editor to set the property to the selected value. Set up a
world with a couple of objects, drag some property instructions into the editor, and then run the
program to see what happens! Keep trying – on lots and lots of properties until you figure

out what they all do. To get you started, two property change examples are demonstrated here.
Other property change instructions are scattered through the remainder of the book, where

examples set various properties at runtime.

Setting Opacity. Suppose lilfish, as in Figure T-4-1, is swimming out to lunch and her favorite
seafood is seaweed. Instructions to point lilfish at the seaweed and then swim toward it are

shown below. The wiggleTail method is defined to make the fish waggle its tail in a left-right
motion. The world and the swim method can be found on the CD with this book.

As the fish moves toward the seaweed, she will also be moving away from the camera. To
simulate underwater conditions, we must consider that as lilfish swims away from the camera

she should fade because water blurs our vision of distant objects. We can make lilfish become
less visible by changing the opacity property. As opacity is decreased, an object becomes less
distinct (faded). To change opacity, click on the opacity tile in the properties pane and drag it

into the editor. From the popup menu, select the opacity percentage, as shown in Figure T-4-2.

166

 Figure T-4-2. Dragging the opacity property into editor

The resulting code looks like this:

When the world is run, the lilfish object will fade as shown in Figure T-4-3. Lowering opacity
causes the object to become less opaque, and hence less visible. At 0%, the object will totally

disappear from view. This does not mean that the object has been deleted. The object is still part
of the world but is not visible on the screen.

167

Figure T-4-3. Fish image fades as opacity is decreased

Setting isShowing. Instead of gradually fading away into the distance, suppose we want an

object to suddenly disappear? Alice provides a second mechanism for making an object
invisible, a property called isShowing. At the time an object is first added to a new world, Alice

automatically makes the object visible in the scene and isShowing is considered true. When we
want an object to just evaporate “into thin air,” the isShowing property is set to false while the
animation is running. To set the isShowing property to fa lse, drag the isShowing property tile

into the world and select false from the popup menu, as shown in Figure T-4-4.

Figure T-4-4. Dragging isShowing property into the editor

The resulting code is shown below.

168

When an object’s isShowing property is set to false, it is not removed from the world. Instead,
the object is simply not rendered to the screen. Later in the program, the object can be made to
reappear by setting its isShowing property back to true.

Built-in Questions (Functions)

The Alice system provides a set of built- in questions -- statements you can ask about properties
of objects and relationships of objects to one another. In other computer programming languages,
questions are often called functions and a function is said to “return a value.”

What kinds of values can you expect to receive when you ask a question in Alice? Values can be

any one of several different types. Five of the more common are:

• number (for example, 5)

• logic value (true or false)

• string(for example, "hello world")

• object(for example, a Robot)

• position (translational and rotational orientation)

What questions can you ask? As with methods, some questions are character- level and some are

world- level. Character- level questions are about properties of a specific object in the world such
as its height, width, and depth. World-level questions are more utilitarian, having to do with
things like the mouse, duration times, and some math operations.

As an example of character- level questions, let’s continue with the lilfish example used above.
To view a list of questions about the lilfish object, select lilfish in the Object Tree and then the

questions tab in the details pane, as in Figure T-4-5.

169

Figure T-4-4. Object questions

Character- level questions are divided into subcategories:

• Proximity – how close the object is (such as distance to, distance above) to some other

object in the world

• Size – dimensions such as height, width, and depth, and how these compare to the

dimensions of another object in the world

• Spatial relation – orientation compared to another object in the world (such as to left of,

to right of)

• Point of view – position in the world

• Other – miscellaneous items such as the name of a subpart of the object

The questions shown in Figure T-4-4 are proximity questions. Some proximity questions such as
“lilfish is within threshold of another object” and “lilfish is at least threshold away from another

object” (threshold is a distance in meters) return a true or false value. Other questions such as
“lilfish distance to” and “lilfish distance to the left of” return a number which is the distance in
meters.

170

Take on that “poke and prod” attitude to explore all these different kinds of questions in the same
way as you explored properties, suggested above. To show you how to get started, here is an

example.

Asking about Distance to. Life is never easy in the ocean world. You may have noticed that a
predator named uglyfish has entered the aquatic scene in Figure T-4-4. Of course, lilfish is not

dumb – she is going to swim to the coral reef (FireCoral object) to hide. The program code

needs to be modified to make lilfish swim to the coral. But, how far away is the coral? One way
to find out is to use trial and error – that is, try different distances until we find one that works.

Another technique to find the distance is to ask Alice a question: “What is the distance of lilfish
to the FireCoral?” Alice will answer the question by returning the distance. Then, lilfish can be
moved forward that distance. First, modify the code to point lilfish at the FireCoral object. Then,

the move forward instruction should be modified to make lilfish swim the distance to the
FireCoral object (instead of 1 meter, as previously written). To ask the distance to question, first

drag the distance to tile into the editor and drop it to replace the 1 meter distance. From the
popup menu, select the target FireCoral object, as demonstrated in Figure T-4-5.

Figure T-4-5. Dragging distance to question into editor

The resulting code is:

171

Notice that no question mark appears at the end of the call to the question. Alice will interpret
this as a question anyway and reply with the distance between the two objects.

Collision
When the program code to hide lilfish from uglyfish is executed, the animation is not exactly

what was expected. Lilfish seems to run right into the middle of the FireCoral object. This is
called a collision. In some animations, a collision is exactly what is desired. But, in this
example, we are not willing to believe that lilfish can swim right through the bony-like crust

of the coral object. The reason a collision occurs is that Alice answers the distance to question
with a number representing the distance from the center of the fish to the center of the coral. To

see how this works, look at Figure T-4-6.

Figure T-4-6. distance to is center-to-center

Expressions

How can a collision be avoided between these two objects? One way is to adjust the distance
that lilfish moves so she doesn't swim right inside the coral. Adjusting the distance requires the

172

use of an arithmetic expression. Alice provides arithmetic operators for common arithmetic
expressions: add (+), subtract (-), multiply (*), and divide (/). To use an arithmetic expression to

adjust the distance the object moves, click to the right of the distance tile, then select math

� lilfish distance to FireCoral – � 1.25.

Figure T-4-7. Selecting an expression to adjust distance

The resulting instruction subtracts 1.25 meters from the distance as shown below. Now, the

lilfish object will stop short of colliding with the coral.

173

The move to instruction
A move to instruction moves an object to a specific location in a world. The objects in our

worlds are, of course, in 3D space. So, a location is specified using a reference to the position of
the object along a 3D axis, as shown in Figure T-4-8.

Figure T-4-8. Location reference along 3D axis

When an object is first added to the world, it is automatically positioned at location (0,0,0) which
is at the center of the world. The first coordinate specifies the left/right position, the second an

up/down position, and the third specifies a forward/backward position relative to the center of
the world. Although we can tell Alice to move an object to a location by entering a location

using number coordinates, much of the time we use the move to instruction with the position of
another object as the target location. (Alice knows the 3-dimensional location of every object in
the scene and can move another object to the same location.) This is easier to understand if we

show you an example. Figure T-4-9 shows a coach practicing basketball in the gym.

Figure T-4-9. Basketball initial scene

174

The coach is going to shoot the basketball toward the hoop. We want to animate the movement
of the basketball to the rim of the hoop on the backboard. This can be done using a move to

instruction with the position of the hoop rim as the target location. Creating the instruction is a
two step process.

First, select the basketball in the Object tree. From the basketball’s methods, drag the move to
instruction into the editor, as shown in Figure T-4-10.

Figure T-4-10. Dragging move to into editor

Clearly, when the move to instruction is dragged into editor (see Figure T-4-10), the only choice
is the default location Vector3 (0,0,0) -- the center of the world. The resulting instruction is:

Step two is to replace the default location with the position of the target object, in this case the
hoop rim. To get the position of the hoop rim, drag in the built- in position question for the rim
object that asks Alice to return the position of the rim, as shown in Figure T-4-11.

175

Figure T-4-11. Dragging in the position built-in question

Now, when the instruction is executed, the basketball will move to the rim of the hoop, see
Figure T-4-12.

Figure T-4-12. Ball moves to rim

200

5 Interactive Programs: Events and Event-Handling

The real world around us is interactive. We drive cars that turn right or left when we turn the
steering wheel. We change the channel on our television set by sending a signal from a remote

control. We press a button on a game-controller to make a character in a video game jump out of
the way of danger. It’s time we looked at how to create interactive programs in Alice – where the
objects in the scenes respond to mouse clicks and key presses. We have concentrated on writing

programs that were non-interactive – we watched the objects perform actions in a movie-style
animation. In this chapter, we will see how programs can be made interactive.

Much of computer programming (and of the Alice movie-style animations seen earlier) is
computer-centric. That is, the computer program basically runs as the programmer has intended

it. The programmer sets the order of actions and controls the program flow. However, many
computer programs today are user-centric. In other words, it is the computer user (rather than the

programmer) who determines the order of actions. The user clicks the mouse or presses a key on
the keyboard to send a signal to Alice about what to do next. The mouse click or key press is an
event. An event is something that happens. In response to an event, an action (or many actions)

is carried out. We say the “event triggers a response.”

Section 5-1 focuses on the mechanics of how the user creates an event and how the program
responds to the event. Naturally, all of this takes a bit of planning and arrangement. We need to
tell Alice to listen for a particular kind of event and then we need to tell Alice what to do when

the event happens. This means we need to write methods that describe the actions objects in the
animation should take in response to an event. Such a method is called an event-handler method.

Section 5-2 describes how to pass parameters to event-handler methods. In some programming
languages, arranging events and writing event-handler methods is a rather complex kind of

programming. But, one of the achievements of Alice is that the event-response model is
sufficiently simple to illustrate this material to novice programmers.

A special note to instructors:
We have found that interactive programs are fun and highly motivating to students. Nonetheless,

this chapter may be safely skipped from a pedagogic perspective. Almost all exercises and
projects in this book can be created in a non- interactive style.

