
MIPS2.doc 26 November 2002

Computer Architecture Laboratory

MIPS Assembly Language Programming - II

Goals:
a) Learn assembly language subroutine methodology
b) Understand MIPS procedure call conventions
c) Write a subroutines in MIPS assembler

1. As a group we will examine the way MIPS uses registers, memory and the stack as it relates
to subroutine calls. These are sections 3.6, A.5 and A.6 in our text.

2. Write a subroutine, find, in MIPS assembly language. The subroutine should have two
arguments. The first is a character to be searched for; the second is a pointer to a null-
terminated string (use registers $a0 and $a1 respectively). The find routine should locate the
first instance of the sought-after character in the string and return its address in register $v0. If
that character does not exist in the string, then find should return a pointer to the null character
at the end of the string. For example, if the arguments to find are the letter "b" and a pointer to
the string "imbibe," then the return value will be a pointer to the third character in the string.
Thoroughly test your procedure. (Hint: see problem 3.23) Be sure the subroutine correctly
handles the situation where the character is not in the string.

3. Write a subroutine, count, in MIPS assembly language. The count procedure has two
arguments. The first is the character to be counted, and the second is a pointer to a string in
register (using registers $a0 and $a1 respectively). The subroutine returns a count of the total
number of times the character appears in the string in register $v0. You must use your find
subroutine from part 2 of this lab to find the next occurrence of the character. (Hint: see
problem 3.24) The routine should accept strings of up to 255 characters.

4. Imbed subroutine count in a program that interactively gets one character and the string to
be searched as data from the console and prints the results to the console. Inputs should have
prompts; outputs should have explanations. Mail me the assembly language test program
(named your_last_name-2.asm). I will execute the program in SPIM to see if it has done the job
correctly. The program should be well commented so that I am able to understand your logic.
Answers to the following questions will determine the grade for this lab.

1) Did the program execute?
2) Did it return a correct value?
3) Is it readable?
4) Is it written efficiently?

N.B. For an overall structure, this program should have subroutine find embedded in subroutine
count imbedded in test program your_last_name-2.asm.

Hints:

1. Modularize this project or it will get totally out of hand
2. Prototype your algorithms in C before writing them in assembler.
3. See the various syscalls for console I/O

