
Code Optimization I:
Machine Independent Optimization

Code Optimization I:
Machine Independent Optimization

TopicsTopics
Machine-Independent Optimizations

Code motion
Reduction in strength
Common subexpression sharing

Tuning
Identifying performance bottlenecks

Randal E. Bryant
Carnegie Mellon University

William J. Taffe
Plymouth State University

using the slides of

– 2 – CS 4300 – Computer Architecture

Another Great RealityAnother Great Reality
In spite of what you “learned” in Data Structures and Algorithm In spite of what you “learned” in Data Structures and Algorithm Analysis!Analysis!

There’s more to performance than asymptotic There’s more to performance than asymptotic
complexitycomplexity

Constant factors matter too!Constant factors matter too!
Easily see 10:1 performance range depending on how code
is written
Must optimize at multiple levels:

algorithm, data representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
How programs are compiled and executed
How to measure program performance and identify
bottlenecks
How to improve performance without destroying code
modularity and generality

– 3 – CS 4300 – Computer Architecture

Optimizing CompilersOptimizing Compilers
Provide efficient mapping of program to machineProvide efficient mapping of program to machine

register allocation
code selection and ordering
eliminating minor inefficiencies

Don’t (usually) improve asymptotic efficiencyDon’t (usually) improve asymptotic efficiency
up to programmer to select best overall algorithm
big-O savings are (often) more important than constant
factors

but constant factors also matter

Have difficulty overcoming “optimization blockers”Have difficulty overcoming “optimization blockers”
potential memory aliasing
potential procedure side-effects

– 4 – CS 4300 – Computer Architecture

Limitations of Optimizing CompilersLimitations of Optimizing Compilers
Operate Under Fundamental ConstraintOperate Under Fundamental Constraint

Must not cause any change in program behavior under any
possible condition
Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

Behavior that may be obvious to the programmer can be Behavior that may be obvious to the programmer can be
obfuscated by languages and coding stylesobfuscated by languages and coding styles

e.g., data ranges may be more limited than variable types suggest

Most analysis is performed only within proceduresMost analysis is performed only within procedures
whole-program analysis is too expensive in most cases

Most analysis is based only on Most analysis is based only on staticstatic informationinformation
compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservativeWhen in doubt, the compiler must be conservative

– 5 – CS 4300 – Computer Architecture

Machine-Independent OptimizationsMachine-Independent Optimizations
Optimizations you should do regardless of processor /
compiler

Code MotionCode Motion
Reduce frequency with which computation performed

If it will always produce same result
Especially moving code out of loop

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[j];

for (i = 0; i < n; i++) {
int ni = n*i;
for (j = 0; j < n; j++)
a[ni + j] = b[j];

}

– 6 – CS 4300 – Computer Architecture

Compiler-Generated Code MotionCompiler-Generated Code Motion
Most compilers do a good job with array code + simple loop
structures

Code Generated by GCCCode Generated by GCC
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
a[n*i + j] = b[j];

imull %ebx,%eax # i*n
movl 8(%ebp),%edi # a
leal (%edi,%eax,4),%edx # p = a+i*n (scaled by 4)

Inner Loop
.L40:

movl 12(%ebp),%edi # b
movl (%edi,%ecx,4),%eax # b+j (scaled by 4)
movl %eax,(%edx) # *p = b[j]
addl $4,%edx # p++ (scaled by 4)
incl %ecx # j++
jl .L40 # loop if j<n

for (i = 0; i < n; i++) {
int ni = n*i;
int *p = a+ni;
for (j = 0; j < n; j++)
*p++ = b[j];

}

– 7 – CS 4300 – Computer Architecture

Reduction in StrengthReduction in Strength
Replace costly operation with simpler one
Shift, add instead of multiply or divide
16*x --> x << 4

Utility machine dependent
Depends on cost of multiply or divide instruction
On Pentium II or III, integer multiply only requires 4 CPU cycles

Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)
a[ni + j] = b[j];

ni += n;
}

– 8 – CS 4300 – Computer Architecture

Make Use of RegistersMake Use of Registers
Reading and writing registers much faster than
reading/writing memory

LimitationLimitation
Compiler not always able to determine whether variable can
be held in register
Possibility of Aliasing
See example later

– 9 – CS 4300 – Computer Architecture

Machine-Independent Opts. (Cont.)Machine-Independent Opts. (Cont.)
Share Common Share Common SubexpressionsSubexpressions

Reuse portions of expressions
Compilers often not very sophisticated in exploiting
arithmetic properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leal -1(%edx),%ecx # i-1
imull %ebx,%ecx # (i-1)*n
leal 1(%edx),%eax # i+1
imull %ebx,%eax # (i+1)*n
imull %ebx,%edx # i*n

– 10 – CS 4300 – Computer Architecture

Vector ADTVector ADT

ProceduresProcedures
vec_ptr new_vec(int len)

Create vector of specified length
int get_vec_element(vec_ptr v, int index, int *dest)

Retrieve vector element, store at *dest
Return 0 if out of bounds, 1 if successful

int *get_vec_start(vec_ptr v)
Return pointer to start of vector data

Similar to array implementations in Pascal, ML, Java
E.g., always do bounds checking

length
data • • •

0 1 2 length–1

– 11 – CS 4300 – Computer Architecture

Optimization ExampleOptimization Example

ProcedureProcedure
Compute sum of all elements of vector
Store result at destination location

void combine1(vec_ptr v, int *dest)
{
int i;
*dest = 0;
for (i = 0; i < vec_length(v); i++) {
int val;
get_vec_element(v, i, &val);
*dest += val;

}
}

– 12 – CS 4300 – Computer Architecture

Time ScalesTime Scales
Absolute TimeAbsolute Time

Typically use nanoseconds
10–9 seconds

Time scale of computer instructions

Clock CyclesClock Cycles
Most computers controlled by high frequency clock signal
Typical Range

100 MHz
» 108 cycles per second
» Clock period = 10ns

2 GHz
» 2 X 109 cycles per second
» Clock period = 0.5ns

Fish machines: 550 MHz (1.8 ns clock period)

– 13 – CS 4300 – Computer Architecture

Cycles Per ElementCycles Per Element
Convenient way to express performance of program that
operators on vectors or lists
Length = n
T = CPE*n + Overhead

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

Elements

C
yc

le
s

vsum1
Slope = 4.0

vsum2
Slope = 3.5

– 14 – CS 4300 – Computer Architecture

Optimization ExampleOptimization Example

ProcedureProcedure
Compute sum of all elements of integer vector
Store result at destination location
Vector data structure and operations defined via abstract data
type

Pentium II/III Performance: Clock Cycles / ElementPentium II/III Performance: Clock Cycles / Element
42.06 (Compiled -g) 31.25 (Compiled -O2)

void combine1(vec_ptr v, int *dest)
{
int i;
*dest = 0;
for (i = 0; i < vec_length(v); i++) {
int val;
get_vec_element(v, i, &val);
*dest += val;

}
}

– 15 – CS 4300 – Computer Architecture

Understanding LoopUnderstanding Loop

InefficiencyInefficiency
Procedure vec_length called every iteration
Even though result always the same

void combine1-goto(vec_ptr v, int *dest)
{

int i = 0;
int val;
*dest = 0;
if (i >= vec_length(v))
goto done;

loop:
get_vec_element(v, i, &val);
*dest += val;
i++;
if (i < vec_length(v))
goto loop

done:
}

1 iteration

– 16 – CS 4300 – Computer Architecture

Move vec_length Call Out of LoopMove vec_length Call Out of Loop

OptimizationOptimization
Move call to vec_length out of inner loop

Value does not change from one iteration to next
Code motion

CPE: 20.66 (Compiled -O2)
vec_length requires only constant time, but significant overhead

void combine2(vec_ptr v, int *dest)
{
int i;
int length = vec_length(v);
*dest = 0;
for (i = 0; i < length; i++) {
int val;
get_vec_element(v, i, &val);
*dest += val;

}
}

– 17 – CS 4300 – Computer Architecture

void lower(char *s)
{
int i;
for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');

}

Code Motion Example #2Code Motion Example #2
Procedure to Convert String to Lower CaseProcedure to Convert String to Lower Case

Extracted from 213 lab submissions, Fall, 1998

– 18 – CS 4300 – Computer Architecture

Lower Case Conversion PerformanceLower Case Conversion Performance

Time quadruples when double string length
Quadratic performance

lower1

0.0001

0.001

0.01

0.1
1

10

100

1000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

C
PU

 S
ec

on
ds

– 19 – CS 4300 – Computer Architecture

Convert Loop To Goto FormConvert Loop To Goto Form

strlen executed every iteration
strlen linear in length of string

Must scan string until finds '\0'
Overall performance is quadratic

void lower(char *s)
{

int i = 0;
if (i >= strlen(s))
goto done;

loop:
if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');
i++;
if (i < strlen(s))
goto loop;

done:
}

– 20 – CS 4300 – Computer Architecture

Improving PerformanceImproving Performance

Move call to strlen outside of loop
Since result does not change from one iteration to another
Form of code motion

void lower(char *s)
{
int i;
int len = strlen(s);
for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');

}

– 21 – CS 4300 – Computer Architecture

Lower Case Conversion PerformanceLower Case Conversion Performance
Time doubles when double string length
Linear performance

0.000001
0.00001
0.0001
0.001
0.01
0.1

1
10

100
1000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

C
PU

 S
ec

on
ds

lower1 lower2

– 22 – CS 4300 – Computer Architecture

Optimization Blocker: Procedure CallsOptimization Blocker: Procedure Calls
Why couldn’t the compiler move Why couldn’t the compiler move vec_lenvec_len or or strlenstrlen out of out of

the inner loop?the inner loop?
Procedure may have side effects

Alters global state each time called
Function may not return same value for given arguments

Depends on other parts of global state
Procedure lower could interact with strlen

Why doesn’t compiler look at code for Why doesn’t compiler look at code for vec_lenvec_len or or strlenstrlen??
Linker may overload with different version

Unless declared static
Interprocedural optimization is not used extensively due to cost

Warning:Warning:
Compiler treats procedure call as a black box
Weak optimizations in and around them

– 23 – CS 4300 – Computer Architecture

Reduction in StrengthReduction in Strength

OptimizationOptimization
Avoid procedure call to retrieve each vector element

Get pointer to start of array before loop
Within loop just do pointer reference
Not as clean in terms of data abstraction

CPE: 6.00 (Compiled -O2)
Procedure calls are expensive!
Bounds checking is expensive

void combine3(vec_ptr v, int *dest)
{
int i;
int length = vec_length(v);
int *data = get_vec_start(v);
*dest = 0;
for (i = 0; i < length; i++) {
*dest += data[i];

}

– 24 – CS 4300 – Computer Architecture

Eliminate Unneeded Memory RefsEliminate Unneeded Memory Refs

OptimizationOptimization
Don’t need to store in destination until end
Local variable sum held in register
Avoids 1 memory read, 1 memory write per cycle
CPE: 2.00 (Compiled -O2)

Memory references are expensive!

void combine4(vec_ptr v, int *dest)
{
int i;
int length = vec_length(v);
int *data = get_vec_start(v);
int sum = 0;
for (i = 0; i < length; i++)
sum += data[i];

*dest = sum;
}

– 25 – CS 4300 – Computer Architecture

Detecting Unneeded Memory Refs.Detecting Unneeded Memory Refs.

PerformancePerformance
Combine3

5 instructions in 6 clock cycles
addl must read and write memory

Combine4
4 instructions in 2 clock cycles

.L18:
movl (%ecx,%edx,4),%eax
addl %eax,(%edi)
incl %edx
cmpl %esi,%edx
jl .L18

Combine3

.L24:
addl (%eax,%edx,4),%ecx

incl %edx
cmpl %esi,%edx
jl .L24

Combine4

– 26 – CS 4300 – Computer Architecture

Optimization Blocker: Memory AliasingOptimization Blocker: Memory Aliasing
AliasingAliasing

Two different memory references specify single location

ExampleExample
v: [3, 2, 17]

combine3(v, get_vec_start(v)+2) --> ?

combine4(v, get_vec_start(v)+2) --> ?

ObservationsObservations
Easy to have happen in C

Since allowed to do address arithmetic
Direct access to storage structures

Get in habit of introducing local variables
Accumulating within loops
Your way of telling compiler not to check for aliasing

– 27 – CS 4300 – Computer Architecture

Machine-Independent Opt. SummaryMachine-Independent Opt. Summary
Code MotionCode Motion

Compilers are good at this for simple loop/array structures
Don’t do well in presence of procedure calls and memory aliasing

Reduction in StrengthReduction in Strength
Shift, add instead of multiply or divide

compilers are (generally) good at this
Exact trade-offs machine-dependent

Keep data in registers rather than memory
compilers are not good at this, since concerned with aliasing

Share Common Share Common SubexpressionsSubexpressions
compilers have limited algebraic reasoning capabilities

– 28 – CS 4300 – Computer Architecture

Important ToolsImportant Tools
MeasurementMeasurement

Accurately compute time taken by code
Most modern machines have built in cycle counters
Using them to get reliable measurements is tricky

Profile procedure calling frequencies
Unix tool gprof

ObservationObservation
Generating assembly code

Lets you see what optimizations compiler can make
Understand capabilities/limitations of particular compiler

– 29 – CS 4300 – Computer Architecture

Code Profiling ExampleCode Profiling Example
TaskTask

Count word frequencies in text document
Produce sorted list of words from most frequent to least

StepsSteps
Convert strings to lowercase
Apply hash function
Read words and insert into hash table

Mostly list operations
Maintain counter for each unique word

Sort results

Data SetData Set
Collected works of Shakespeare
946,596 total words, 26,596 unique
Initial implementation: 9.2 seconds

thatthat11,51911,519
inin11,72211,722
mymy12,93612,936
youyou1401014010
aa15,37015,370
ofof18,51418,514
toto20,95720,957
II21,02921,029
andand27,52927,529
thethe29,80129,801

Shakespeare’s
most frequent words

– 30 – CS 4300 – Computer Architecture

Code ProfilingCode Profiling
Augment Executable Program with Timing FunctionsAugment Executable Program with Timing Functions

Computes (approximate) amount of time spent in each
function
Time computation method

Periodically (~ every 10ms) interrupt program
Determine what function is currently executing
Increment its timer by interval (e.g., 10ms)

Also maintains counter for each function indicating number
of times called

UsingUsing
gcc –O2 –pg prog. –o prog

./prog
Executes in normal fashion, but also generates file gmon.out

gprof prog
Generates profile information based on gmon.out

– 31 – CS 4300 – Computer Architecture

Profiling ResultsProfiling Results

Call StatisticsCall Statistics
Number of calls and cumulative time for each function

Performance LimiterPerformance Limiter
Using inefficient sorting algorithm
Single call uses 87% of CPU time

% cumulative self self total
time seconds seconds calls ms/call ms/call name
86.60 8.21 8.21 1 8210.00 8210.00 sort_words
5.80 8.76 0.55 946596 0.00 0.00 lower1
4.75 9.21 0.45 946596 0.00 0.00 find_ele_rec
1.27 9.33 0.12 946596 0.00 0.00 h_add

– 32 – CS 4300 – Computer Architecture

Code
Optimizations
Code
Optimizations

First step: Use more efficient sorting function
Library function qsort

0
1
2
3
4
5
6
7
8
9

10

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

C
PU

 S
ec

s.

Rest
Hash
Lower
List
Sort

– 33 – CS 4300 – Computer Architecture

Further OptimizationsFurther Optimizations

Iter first: Use iterative function to insert elements into linked
list

Causes code to slow down
Iter last: Iterative function, places new entry at end of list

Tend to place most common words at front of list
Big table: Increase number of hash buckets
Better hash: Use more sophisticated hash function
Linear lower: Move strlen out of loop

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

C
PU

 S
ec

s.

Rest
Hash
Lower
List
Sort

– 34 – CS 4300 – Computer Architecture

Profiling ObservationsProfiling Observations
BenefitsBenefits

Helps identify performance bottlenecks
Especially useful when have complex system with many
components

LimitationsLimitations
Only shows performance for data tested
E.g., linear lower did not show big gain, since words are
short

Quadratic inefficiency could remain lurking in code
Timing mechanism fairly crude

Only works for programs that run for > 3 seconds

