
Computer Architecture
Logic Design

Computer ArchitectureComputer Architecture
Logic DesignLogic Design

William J. Taffe
Plymouth State University

Using the Slides of Randall E. Bryant
Carnegie Mellon University

– 2 – CS 4300 – Computer Architecture

Overview of Logic DesignOverview of Logic Design
Fundamental Hardware RequirementsFundamental Hardware Requirements

Communication
How to get values from one place to another

Computation
Storage

Bits are Our FriendsBits are Our Friends
Everything expressed in terms of values 0 and 1
Communication

Low or high voltage on wire
Computation

Compute Boolean functions
Storage

Store bits of information

– 3 – CS 4300 – Computer Architecture

Digital SignalsDigital Signals

Use voltage thresholds to extract discrete values from
continuous signal
Simplest version: 1-bit signal

Either high range (1) or low range (0)
With guard range between them

Not strongly affected by noise or low quality circuit elements
Can make circuits simple, small, and fast

Voltage

Time

0 1 0

– 4 – CS 4300 – Computer Architecture

Computing with Logic GatesComputing with Logic Gates

Outputs are Boolean functions of inputs
Respond continuously to changes in inputs

With some, small delay

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay Falling Delay

– 5 – CS 4300 – Computer Architecture

Combinational CircuitsCombinational Circuits

Acyclic Network of Logic GatesAcyclic Network of Logic Gates
Continously responds to changes on primary inputs
Primary outputs become (after some delay) Boolean
functions of primary inputs

Acyclic Network

Primary
Inputs

Primary
Outputs

– 6 – CS 4300 – Computer Architecture

Bit EqualityBit Equality

Generate 1 if a and b are equal

Hardware Control Language (HCL)Hardware Control Language (HCL)
Very simple hardware description language

Boolean operations have syntax similar to C logical operations
We’ll use it to describe control logic for processors

Bit equal
a

b

eq
bool eq = (a&&b)||(!a&&!b)

HCL Expression

– 7 – CS 4300 – Computer Architecture

Word EqualityWord Equality

32-bit word size
HCL representation

Equality operation
Generates Boolean value

b31
Bit equal

a31

eq31

b30
Bit equal

a30

eq30

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

==
B

A

Eq

Word-Level Representation

bool Eq = (A == B)

HCL Representation

– 8 – CS 4300 – Computer Architecture

Bit-Level MultiplexorBit-Level Multiplexor

Control signal s
Data signals a and b
Output a when s=1, b when s=0

Bit MUX

b

s

a

out

bool out = (s&&a)||(!s&&b)

HCL Expression

– 9 – CS 4300 – Computer Architecture

Word MultiplexorWord Multiplexor

Select input word A or B
depending on control signal s
HCL representation

Case expression
Series of test : value pairs
Output value for first
successful test

Word-Level Representation

HCL Representation

b31

s

a31

out31

b30

a30

out30

b0

a0

out0

int Out = [
s : A;
1 : B;

];

s

B

A
OutMUX

– 10 – CS 4300 – Computer Architecture

HCL Word-Level ExamplesHCL Word-Level Examples

Find minimum of three
input words
HCL case expression
Final case guarantees
match

A
Min3MIN3B

C
int Min3 = [
A < B && A < C : A;
B < A && B < C : B;
1 : C;

];

D0

D3

Out4

s0
s1

MUX4
D2
D1

Select one of 4 inputs
based on two control
bits
HCL case expression
Simplify tests by
assuming sequential
matching

int Out4 = [
!s1&&!s0: D0;
!s1 : D1;
!s0 : D2;
1 : D3;

];

Minimum of 3 Words

4-Way Multiplexor

– 11 – CS 4300 – Computer Architecture

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

Arithmetic Logic UnitArithmetic Logic Unit

Combinational logic
Continuously responding to inputs

Control signal selects function computed
Corresponding to 4 arithmetic/logical operations in Y86

Also computes values for condition codes

A
L
U

Y

X

X + Y

0

A
L
U

Y

X

X - Y

1

A
L
U

Y

X

X & Y

2

A
L
U

Y

X

X ^ Y

3

A

B

A

B

A

B

A

B

– 12 – CS 4300 – Computer Architecture

V1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1

Storing 1 BitStoring 1 Bit
Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

– 13 – CS 4300 – Computer Architecture

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Vin
V2

Storing 1 Bit (cont.)Storing 1 Bit (cont.)
Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin V1

V2

Vin = V2

Stable 0

Stable 1

Metastable

– 14 – CS 4300 – Computer Architecture

Physical AnalogyPhysical Analogy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Vin
V2

Stable 0

Stable 1

Metastable

.Stable left . Stable right.

Metastable

– 15 – CS 4300 – Computer Architecture

Storing and Accessing 1 BitStoring and Accessing 1 Bit

Q+

Q–

R

S

R-S Latch

Q+

Q–

R

S

Q+

Q–

R

S

Resetting
1

0

1 0

0 1

Q+

Q–

R

S

Q+

Q–

R

S

Setting
0

1

0 1

1 0

Q+

Q–

R

S

Q+

Q–

R

S

Storing
0

0

!q q

q !q

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

– 16 – CS 4300 – Computer Architecture

1-Bit Latch1-Bit Latch
D Latch

Q+

Q–

R

S

D

C

Data

Clock

Latching

1

Q+

Q–

R

S

D

C

Q+

Q–

R

S

D

C

d !d !d !d d

d d !d
0

Storing

Q+

Q–

R

S

D

C

Q+

Q–

R

S

D

C

d !d q

!q

!q

q0

0

– 17 – CS 4300 – Computer Architecture

Transparent 1-Bit LatchTransparent 1-Bit Latch

When in latching mode, combinational propogation from D
to Q+ and Q–
Value latched depends on value of D as C falls

Latching

1

Q+

Q–

R

S

D

C

Q+

Q–

R

S

D

C

d !d !d !d d

d d !d

C

D

Q+
Time

Changing D

– 18 – CS 4300 – Computer Architecture

Edge-Triggered LatchEdge-Triggered Latch

Only in latching mode
for brief period

Rising clock edge
Value latched depends
on data as clock rises
Output remains stable at
all other times

Q+

Q–

R

S

D

C

Data

Clock T
Trigger

C

D

Q+

Time

T

– 19 – CS 4300 – Computer Architecture

RegistersRegisters

Stores word of data
Different from program registers seen in assembly code

Collection of edge-triggered latches
Loads input on rising edge of clock

I O

Clock

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7
i6
i5
i4
i3
i2
i1
i0

o7

o6

o5

o4

o3

o2

o1

o0

Clock

Structure

– 20 – CS 4300 – Computer Architecture

Register OperationRegister Operation

Stores data bits
For most of time acts as barrier between input and output
As clock rises, loads input

State = x

Rising
clockOutput = xInput = y

x

State = y

Output = y

y

– 21 – CS 4300 – Computer Architecture

State Machine ExampleState Machine Example

Accumulator
circuit
Load or
accumulate on
each cycle

Comb. Logic

A
L
U

0

Out
MUX

0

1

Clock

In
Load

x0 x1 x2 x3 x4 x5

x0 x0+x1 x0+x1+x2 x3 x3+x4 x3+x4+x5

Clock

Load

In

Out

– 22 – CS 4300 – Computer Architecture

Random-Access MemoryRandom-Access Memory

Stores multiple words of memory
Address input specifies which word to read or write

Register file
Holds values of program registers
%eax, %esp, etc.
Register identifier serves as address

» ID 8 implies no read or write performed
Multiple Ports

Can read and/or write multiple words in one cycle
» Each has separate address and data input/output

Register
file

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW

Read ports Write port

Clock

– 23 – CS 4300 – Computer Architecture

Register File TimingRegister File Timing
ReadingReading

Like combinational logic
Output data generated based on
input address

After some delay

WritingWriting
Like register
Update only as clock rises

Register
file

Register
file

A

B

srcA

valA

srcB

valB

y
2

Register
file

Register
file

W dstW

valW

Clock

x2
Rising
clock Register

file
Register

file
W dstW

valW

Clock

y2

x2

x

2

– 24 – CS 4300 – Computer Architecture

Hardware Control LanguageHardware Control Language
Very simple hardware description language
Can only express limited aspects of hardware operation

Parts we want to explore and modify

Data TypesData Types
bool: Boolean

a, b, c, …
int: words

A, B, C, …
Does not specify word size---bytes, 32-bit words, …

StatementsStatements
bool a = bool-expr ;

int A = int-expr ;

– 25 – CS 4300 – Computer Architecture

HCL OperationsHCL Operations
Classify by type of value returned

Boolean ExpressionsBoolean Expressions
Logic Operations

a && b, a || b, !a
Word Comparisons

A == B, A != B, A < B, A <= B, A >= B, A > B
Set Membership

A in { B, C, D }
» Same as A == B || A == C || A == D

Word ExpressionsWord Expressions
Case expressions

[a : A; b : B; c : C]
Evaluate test expressions a, b, c, … in sequence
Return word expression A, B, C, … for first successful test

– 26 – CS 4300 – Computer Architecture

SummarySummary
ComputationComputation

Performed by combinational logic
Computes Boolean functions
Continuously reacts to input changes

StorageStorage
Registers

Hold single words
Loaded as clock rises

Random-access memories
Hold multiple words
Possible multiple read or write ports
Read word when address input changes
Write word as clock rises

