11: Buffers

-What is a buffer?

- Calculating pH
- Weak acids / bases
- Equilibrium constants of acids / bases
- Hendersen-Hasselbach Equation
- Buffer capacity
- Preparing buffers

What is a buffer?

- Solution that resists changes in pH when
- Small amounts of acid or base are added
- Dilution occurs
- Consists of either:
- Weak acid / conjugate base pair OR
- Weak base / conjugate acid pair

What is a Buffer?

- Two things to know about a buffer:
- pH that buffer creates
- Buffer capacity

Weak Acids and Bases

Acid: $\quad \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$

Base:
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Acid/Base Conjugate Pair

Acid: $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$

Conj. Base: $\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Base/Acid Conjugate Pair

Base: $\quad \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Conj. Acid: $\mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{B}(\mathrm{aq})$

Acid / Base Equilibrium Constants

Acid: $\quad \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]}
$$

Base: $\quad \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right][\mathrm{OH}]}{[\mathrm{B}]}
$$

Some Acid Constants

Name	Formula	K_{a}
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}
Hydrofluoric acid	HF	7.2×10^{-4}
Nitrous acid	HNO_{2}	4.5×10^{-4}
Formic acid	$\mathrm{HCO}_{2} \mathrm{H}$	1.8×10^{-4}
Benzoic acid	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$	6.3×10^{-5}
Acetic acid	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	1.8×10^{-5}
Propanoic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	1.3×10^{-5}

The " p " function

$$
p X=-\log (X)
$$

SO....

$$
\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)
$$

$$
\mathrm{pK}_{\mathrm{a}}=-\log \left(\mathrm{K}_{\mathrm{a}}\right)
$$

$$
\mathrm{pK}_{\mathrm{b}}=-\log \left(\mathrm{K}_{\mathrm{b}}\right)
$$

Example

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-(\mathrm{aq})}
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=7.5 \times 10^{-3}
$$

$$
\mathrm{pK}_{\mathrm{a}}=-\log \left(7.5 \times 10^{-3}\right)=2.12
$$

Henderson-Hasselbalch Equation

Acid:

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]}
$$

Using p-functions, can derive:

Henderson-Hasselbalch Equation

Base:

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
$$

Using p-functions, can derive:

Buffer Capacity

- Definition: Moles of strong acid or base needed to change $\mathrm{pH} \pm 1$ of 1 L of buffer
- For best buffer capacity, use conjugate pair with $\mathrm{pK}_{\mathrm{a}}=\mathrm{pH} \pm 1$
- Larger [HA] and [A] yields greater buffer capacity
- Most buffers are 0.01 to 0.10 M

Making a Buffert Questions to Consider

- What pH do you want?
- Conjugate pair with pK_{a} close to pH
- What volume is needed?
- How strong do you need to make buffer?
- Buffering capacity
- Concentration of acid / base
- Limitations on conjugate pair?
- Availability
- Expense
- Incompatible with your system (i.e. toxic)?

How to Attain your pH?

- Method 1: Use Henderson-Hasselbalch to calculate exact amounts
- Method 2: Add amount of acid needed. Titrate with strong base (NaOH) and pH meter
- Method 3: Combination
- Use Henderson-Hasselbalch to calculate
- Add amount of acid needed
- "Titrate" with conjugate base and pH meter

Today's lab

- Make two buffers with $\mathrm{pH}=5.0$ - Different buffering capacities
- Determine the buffering capacity
- Pre-lab question: Mass of sodium acetate to make 100 mL buffer at $\mathrm{pH}=$ 5.0 , with 5.0 mL of 0.50 M acetic acid

