## 9: Standardizing Bases

- Using NaOH
- $\mathrm{CO}_{2}$ interference in bases
- Wt \% calculation


## Sodium Hydroxide ( NaOH )

- Solid pellets or flakes
- Very hygroscopic
- Solid always contains water
- Cannot be used as primary standard
- Must standardize solutions


## Sodium Hydroxide (NaOH)

- In solution, reacts with dissolved $\mathrm{CO}_{2}$

$$
\begin{gathered}
\mathrm{CO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons 2 \mathrm{H}^{+}(a q)+\mathrm{CO}_{3}^{2-}(a q) \\
\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) \\
2 \mathrm{Na}^{+}(a q)+\mathrm{CO}_{3}^{2-}(a q) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)
\end{gathered}
$$

- Na+ AND OH- consumed
- White precipitate forms


## Using NaOH Solutions

- Boil water to remove $\mathrm{CO}_{2}$ first
- Store in air-tight container
- Plastic is preferred
- NaOH slowly etches glass
- $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will seize glass stopper
- Must periodically re-standardize
- Make standards from concentrated solutions


# Lab 9 Today's Iftrants NaOH 

## Needed: 500 mL of 0.025 M <br> $0.5 \mathrm{~L} \times 0.025 \mathrm{~mol} / \mathrm{L}=0.0125 \mathrm{~mol} \mathrm{NaOH}$

## wt $\% \times$ density $\times 1 / \mathrm{MW} \times \mathrm{Vol}=$ Moles

$0.5 \times 1.5 \times 1 / 40.0 \times \mathrm{Vol}=0.0125 \mathrm{~mol}$ $\frac{\left(\mathrm{g}_{\text {solute }}\right)}{\left(\mathrm{g}_{\text {soln }}\right)} \underset{\left(\mathrm{mL}_{\text {soln }}\right)}{\left(\mathrm{g}_{\text {soln }}\right)} \underset{\left(\mathrm{g}_{\text {solute }}\right)}{\left(\mathrm{mol}_{\text {solute }}\right)}$
Vol $=0.67 \mathrm{~mL}$ of $50 \% \mathrm{NaOH} 1 \mathrm{~L}$ soln
soln $)$

## Lab 9 Today's Standard

Potassium hydrogen phthalate (KHPh)
$\mathrm{NaOH}+\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{KNaC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$
Notice:
1 mole NaOH : 1 mole $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$

## Lab 9 Today's Standard

## Potassium hydrogen phthalate (KHPh)

$\mathrm{NaOH}+\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{KNaC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$

Needed: Mass of KHPh to react with $\sim 25 \mathrm{~mL}$ of 0.025 M NaOH

$$
25 \mathrm{~mL} \times 0.025 \mathrm{~mol} / \mathrm{L}=0.625 \mathrm{mmol} \mathrm{NaOH}
$$

$0.625 \mathrm{mmol} \mathrm{NaOH} \times 1 \mathrm{~mol} \mathrm{KHPh} \quad=0.625 \mathrm{mmol} \mathrm{KHPh}$
$0.625 \mathrm{mmol} \mathrm{KHPh} \times 204.22 \mathrm{~g} / \mathrm{mol}=127 \mathrm{mg}=0.13 \mathrm{~g}$

## Lab 9 Today's Titration

- Potassium hydrogen phthalate
- Solid acid analyte; Primary Standard
- Acid solution will NOT have $\mathrm{CO}_{2}$
- Sodium hydroxide titrant
- Boil water first to remove $\mathrm{CO}_{2}$
- NO boiling at end point
- Phenolphthalein endpoint


## Lab 10as Steel Sample Prep

## total mass $\times \mathrm{wt} \%=$ mass of component

Find mass of steel containing 4 mg Mn if $\mathrm{wt} \%$ of Mn in steel is 0.6\%

Mass of steel $\times 0.006=4 \mathrm{mg}$
Mass of steel $=4 \mathrm{mg} / 0.006=667 \mathrm{mg}$ $\approx 0.67 \mathrm{~g}$

