9: Standardizing Bases

- Using NaOH
- CO₂ interference in bases
- Wt % calculation

Sodium Hydroxide (NaOH)

- Solid pellets or flakes
- Very hygroscopic
 - Solid always contains water
 - Cannot be used as primary standard
 - Must standardize solutions

Sodium Hydroxide (NaOH)

• In solution, reacts with dissolved CO₂

 $CO_{2}(aq) + H_{2}O(l) \rightleftharpoons 2H^{+}(aq) + CO_{3}^{2-}(aq)$ $H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(l)$ $2Na^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow Na_{2}CO_{3}(s)$

Na+ AND OH- consumedWhite precipitate forms

Using NaOH Solutions

- Boil water to remove CO₂ first
- Store in air-tight container
- Plastic is preferred
 - NaOH slowly etches glass
 - Na₂CO₃ will seize glass stopper
- Must periodically re-standardize
- Make standards from concentrated solutions

Potassium hydrogen phthalate Solid acid analyte; Primary Standard Acid solution will NOT have CO,

Sodium hydroxide titrant

 Boil water first to remove CO₂

<u>NO</u> boiling at end point
Phenolphthalein endpoint

Lab 10a: Steel Sample Prep

total mass \times wt % = mass of component

Find mass of steel containing 4mg Mn if wt% of Mn in steel is 0.6%

Mass of steel $\times 0.006 = 4 \text{ mg}$ Mass of steel = 4 mg/0.006 = 667 mg $\approx 0.67 \text{ g}$