7: Errors, Statistical Analysis, and Spreadsheets

- Errors
- Uncertainty and Error Propagation
- Statistical Analysis
- Spreadsheets

Announcements / Reminders

- Mid-Term (Exam 1) will be a Take-Home
 - Available via Moodle and website on Friday,
 Mar 14
 - Due 5PM Tuesday, Mar 25
 - Must work independently!
- Homework for Lab 6 will be due with Lab 7
 - Ch 3 and Ch 10

Types of Errors

- Systematic Error—will get the same "wrong" answer
 - Ex: un-leveled balance

- Random Error—will get slightly different results every time
 - "noise" or "uncertainty"

Precision and Accuracy

- Accuracy: Ability to get the "true" answer
- Precision: Reproducibility of the result

"Fixing" Errors

- Systematic: Calibrate instruments, compare to "knowns"
- Random: Repeat experiment, use Statistical Analysis

Ideally want both: accuracy and precision No Errors!

Uncertainty

EVERY measurement has uncertainty associated with it

Example: Volumetric Flasks:

Volume	Tolerance (Class A)
1 mL	0.01 mL
10 mL	0.02 mL
25 mL	0.03 mL
50 mL	0.05 mL
100 mL	0.08 mL
250 mL	0.10 mL
500 mL	0.15 mL
1000 mL	0.30 mL

Absolute Uncertainty

Volumetric Flasks:

Volume	Tolerance (Class A)
1 mL	0.01 mL
10 mL	0.02 mL
25 mL	0.03 mL
50 mL	0.05 mL
100 mL	0.08 mL
250 mL	0.10 mL
500 mL	0.15 mL
1000 mL	0.30 mL

1.00 ± 0.01 mL

100.00 ± 0.08 mL

Percent Relative Uncertainty

Volumetric Flasks:

Volume	Tolerance (Class A)
1 mL	0.01 mL
10 mL	0.02 mL
25 mL	0.03 mL
50 mL	0.05 mL
100 mL	0.08 mL
250 mL	0.10 mL
500 mL	0.15 mL
1000 mL	0.30 mL

Absolute uncertainty

Magnitude of Measurement × 100%

1.00 ± 1% mL

100.00 ± 0.08% mL

Propagating Uncertainty

If two or more uncertain numbers are added, subtracted, multiplied, or divided, what is uncertainty of answer?

Adding/Subtracting:

$$e_4 = \sqrt{e_1^2 + e_2^2 + e_3^2}$$

Multiplying/Dividing:

$$\% e_4 = \sqrt{(\% e_1)^2 + (\% e_2)^2 + (\% e_3)^2}$$

Examples of Propagating Uncertainty

Volume delivered from buret = Final vol – Initial vol $\pm \sqrt{(0.02)^2 + (0.02)^2} \,\text{mL}$ $\pm 0.02 \,\text{mL}$ $\pm 0.02 \,\text{mL}$

= 0.028 mL

Calculating Concentration = $\frac{\text{mol}}{\text{Vol}}$ $\frac{\pm 0.03 \%}{\pm 0.1 \%}$

$$\pm \sqrt{(0.03\%)^2 + (0.1\%)^2}$$
$$= 0.1\%$$

Statistical Analysis

- Analyze data from repeated experiments
- Find "outliers" and invalid data
- Determine if data from 2 different sources are "different"

Statistical Analysis: "Simple" Functions

	1		
	Name	Formula	Excel Function
1	Number of Observations	n	COUNT(data)
2	Mean	$\bar{x} = \frac{1}{n} (x_1 + x_2 \cdots x_n)$	AVERAGE(data)
3	Standard Deviation	$s = \sqrt{\frac{\sum_{i} (x_{i} - \overline{x})^{2}}{n - 1}}$	STDEV(data)
4	Minimum value		MIN(data)
5	Maximum value		MAX(data)

Statistical Analysis

6	Student's t	See Table 4-2 (pg 87)	TINV(α, df)
7	Confidence interval	$\mu_{CL} = \bar{x} \pm \frac{ts}{\sqrt{n}}$	AVERAGE(data) + CONFIDENCE(α , s , n) AVERAGE(data) - CONFIDENCE(α , s , n)
8	t Test for Comparison of Means	see Equation 4-4, 4-5 in textbook, pg 89	see spreadsheet "8-StatisticalFunctions.xls" on course website*
9	Grubb's test	$G = \frac{ x - \overline{x} }{s}$	calculate using ABS(), AVERAGE(), and STDEV()

Statistical Analysis Linear Functions

	\/_		
10	Linear Regression (<i>m</i> and <i>b</i>)	see Equations 4-9, 4-10, 4- 11 in textbook, pg 94	SLOPE(data_Y, data_X) INTERCEPT(data_Y, data_X)
11	Standard Deviation of Slope (s_m)	see Equations 4-12, 4-13 in textbook, pg 95	see spreadsheet "8-StatisticalFunctions.xls" on course website*
12	Confidence interval for Slope	$\mu_{m,CI} = m \pm ts_m$	calculate using TINV(α , df) and previously calculated m and s_m
13	Standard Error of Linear Regression		STEYX(data_Y, data_X)
14	R-squared		RSQ(data_Y, data_X)