5: Titrations and Standardivation

I. Titration and Equivalence
II. Primary Standards
III.Burets
IV.Today's Lab

Thitation

Definition: Determining number of moles of an analyte in sample by reaction with known amount of moles in a titrant.

Calculating MIoles

Volume \times Concentration $=$ Moles (L) $\quad(\mathrm{mol} / \mathrm{L})$ (mol)

Equivalence Point

Moles of titrant and analyte stoichiometrically equivalent

Equivalence Point

Mol titrant added $\times \frac{\text { stoic. moles analyte }}{\text { stoic. moles titrant }}=$ mol analyte in sample

$$
\text { Ex: } 5 \mathrm{t}+3 \mathrm{a} \longrightarrow 2 \mathrm{p}
$$

Moles of analyte (a) in sample if 0.25 mol titrant (t) needed to reach the equivalence point?
0.25 mol titrant $\times \frac{3 \mathrm{~mol} \text { analyte }}{5 \mathrm{~mol} \text { titrant }}=0.15 \mathrm{~mol}$ analyte in sample

Requirements for Tlitration

1. Known amount of sample (mass or volume)

- Use analytical balance or volumetric pipette

2. Known concentration and volume of titrant

- Standardize concentration
- Use buret

3. Ability to detect equivalence point

- Indicator, pH meter, etc.

4. Stoichiometry of reaction

Requirements for Titration

How do we find Equivalence Point?

We cannot "see" molecules or reaction at molecular level!

End point: Detectable chemical or physical change in solution occurring "at" equivalence point.

- Often color change

End and Equivalence points NOT necessarily the same!!

Making Titrant

Many acids / bases purchased in "Concentrated" form

- Concentrations approximate

Name	\% by Weight	Density $(\mathrm{g} / \mathrm{mL})$	Molarity $(\mathrm{mol} / \mathrm{L})$
Acetic $\left(\mathrm{HCH}_{3} \mathrm{CO}_{2}\right)$	99.8	1.05	17.4
Hydrochloric (HCl)	37.2	1.19	12.1
Nitric $\left(\mathrm{HNO}_{3}\right)$	70.4	1.41	15.8
Phosphoric $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$	85.5	1.69	14.7
Sulfuric $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	96	1.84	18
$\mathrm{Ammonia}^{2}$ $\left(\mathrm{NH}_{3}\right)$	28	0.9	14.8

Making Titrant

wt $\% \times$ density $\times 1 / \mathrm{MW} \times$ Vol $=$ Moles $\frac{\left(\mathrm{g}_{\text {solute }}\right)}{\left(\mathrm{g}_{\text {soln }}\right)} \quad \frac{\left(\mathrm{g}_{\text {soln }}\right)}{\left(\mathrm{mL}_{\text {soln }}\right)} \quad \frac{\left(\mathrm{mol}_{\text {solute }}\right)}{\left(\mathrm{g}_{\text {solute }}\right)} \quad\left(\mathrm{mL}_{\text {soln }}\right) \quad\left(\mathrm{mol}_{\text {solute }}\right)$

Primary Standards

How do you ensure the concentration of titrant is known as accurately as possible?
I. Most acids and bases used in titration (e.g., HCl) made from stocks of approximate conc.
II. Must standardize titrant against standard that can be accurately weighed (Primary Standard)
III.Primary Standards can be purchased in very pure form and heated to remove water
IV.Keep Primary Standards in desiccator
v. DO NOT CONTAMINATE Primary Standards

Bureis

I. Must be scrupulously clean!
A. Water sheets off clean buret
B. Clinging drops means it's dirty!!
II. Clean with soapy water and a brush III.Rinse several times with tap water IV. Final rinse 3 times with distilled water

Filling Burets

I. NEVER FILL OVER YOUR HEAD
II. Always use a funnel to fill a buret III.Always fill buret with it in clamp
IV.Check stopcock is closed
V. Place waste beaker under tip

Filling Buret

I. Rinse with titrant 2 times:
A. Add small volume ($<10 \mathrm{~mL}$) to buret
B. Open stopcock and drain a few $m L$ into waste
C. Close stopcock
D. Turn buret on side and roll in fingers to wash walls
E. Invert and pour contents into waste container II. Fill buret a bit above 50 mL
A. Drain below 50 mL to remove air in tip
B. Do NOT waste time trying to reach 50.00 mL !

Using Buret

I. Buret tip BELOW top of receiving flask
II. "Opposite" grasp preferred for manipulating stopcock (as shown in the picture)
A. Supports buret
B. Avoids slipping and loosening of stopcock
III.Hold flask in good hand for swirling

Joday's Lab

Prepare and Standardize HCI

- Prepare HCl from conc. HCl
- Weigh Primary Standard
- Titrate!

Today's Titrant HCI

Needed: 1 L of 0.1 M
$1 \mathrm{~L} \times 0.1 \mathrm{~mol} / \mathrm{L}=0.1 \mathrm{~mol} \mathrm{HCl}$
wt $\% \times$ density $\times 1 / \mathrm{MW} \times$ Vol $=$ Moles

Joday's Titrant; HCI

Needed: 1 L of 0.1 M $1 \mathrm{~L} \times 0.1 \mathrm{~mol} / \mathrm{L}=0.1 \mathrm{~mol} \mathrm{HCl}$

Volume \times Concentration $=$ Moles
(L) $\quad(\mathrm{mol} / \mathrm{L}) \quad(\mathrm{mol})$

$$
\begin{aligned}
& \text { Vol } \times \begin{array}{c}
12.1
\end{array}= \\
& (\mathrm{L}) \quad 0.1 \\
& (\mathrm{~mol} / \mathrm{L})
\end{aligned}
$$

$\mathrm{Vol}=8.2 \mathrm{~mL}$ of conc HCl in 1 L soln

Today's Standard

Sodium Carbonate

$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Ioday's Standard

Sodium Carbonate

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Notice:
2 moles $\mathrm{HCl}: 1$ mole $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Ratios:
$\frac{2 \text { moles } \mathrm{HCl}}{1 \text { mole } \mathrm{Na}_{2} \mathrm{CO}_{3}}$
$\frac{1 \text { mole } \mathrm{Na}_{2} \mathrm{CO}_{3}}{2 \text { moles } \mathrm{HCl}}$

Today's Standard

Sodium Carbonate

$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Needed: Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to react with $\sim 25 \mathrm{~mL}$ of 0.1 M HCl .

$$
25 \mathrm{~mL} \times 0.1 \mathrm{~mol} / \mathrm{L}=2.5 \mathrm{mmol} \mathrm{HCl}
$$

$$
\begin{aligned}
& 2.5 \mathrm{mmol} \mathrm{HCl} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{2 \mathrm{~mol} \mathrm{HCl}^{2}}=1.25 \mathrm{mmol} \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& 1.25 \mathrm{mmol} \mathrm{Na} \mathrm{CO}_{3} \times 105.99 \mathrm{~g} / \mathrm{mol}=132 \mathrm{mg}=0.132 \mathrm{~g}
\end{aligned}
$$

Today's Standard

Sodium Carbonate
 \square
 $2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Carbon Dioxide Interference:
$\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-}$ Boil solution near end point to eliminate CO_{2}

Ifps for Performing Titration

- DO NOT forget to add the indicator!
- Sample concentration approximately known?
- Yes: Calculate approximate vol of titrant needed
- No: "Waste" the first sample: titrate rapidly to find approximate end point. (Do NOT count this in final calculation)
- Perform titrations:
- Rapidly drain titrant to within few mL of endpoint
- Carefully titrate last few mL
- Touch flask to buret tip to get drop
- Rinse down flask, but not the buret tip
- SAVE YOUR HCI SOLUTION in a 1L plastic bottle for future labs.

