3: Concentration, Solutions, pH

I. Components of a Solution
II. Concentration: Units and Calculations
III.Preparing Solutions
A. Measuring and Transferring Solute
B. Using Stock Solutions
IV.Measuring pH
A. pH meters
V. Desiccator Use

Solutions

Solution: Homogeneous mixture
Solute: Minor component in solution
Solvent: Major component in solution

Example: If a teaspoon of sugar is dissolved in a cup of water, sugar is the solute, water is the solvent, and the entire mixture is the solution.

Concentration

Concentration: The amount of solute in the solution

"Amount" may be measured in different ways
Solute
Solution
Number (moles)

Mass
Volume

Mass
Volume

Concentration Units

Solute:	Number
Solution:	Moles
Liter	$=$ Molarity (M)

Solute: Mass $\quad \frac{g}{g} \times 100 \quad=\%$ by weight
Solution: Mass
Solute: Volume $\quad \frac{\mathrm{L}}{\mathrm{L}} \times 100 \quad=\%$ by volume,$~$

Solute: | Mass |
| :--- |
| Solution: Volume |$\frac{\text { grams }}{\text { Liter }} \quad=\mathrm{g} / \mathrm{L}, ~$

Note: Density is also mass per volume $(\mathrm{g} / \mathrm{mL})$, but of the whole thing

Concentration Unitss SParts Perm"

Parts per million means: $\frac{\text { One part solute }}{\text { One million parts solution }}$
Parts per billion means: $\frac{\text { One part solute }}{\text { One billion parts solution }}$

Solute	Mass		mg
Solution	Mass		ppm
Solute:	Mass		
Solution:	Mass	$\frac{\mu \mathrm{g}}{\text { Liter }}$	$=\mathrm{ppb}$

Note: 1 L of water is 1 kg , which is one million mg

Molality: A Weird One

Solute:	Number	Moles
Solvent:	Mass	Mg

> Denominator is "Solvent"!

- Easy to calculate
- Difficult to use
- Will not see in this class

Examples

I. $0.500 \mathrm{~g} \mathrm{NaCl}(\mathrm{MW}=58.44 \mathrm{~g})$ is dissolved in water to make 25.0 mL of solution. What is the molarity?

Examples

I. $0.500 \mathrm{~g} \mathrm{NaCl}(\mathrm{MW}=58.44 \mathrm{~g})$ is dissolved in water to make 25.0 mL of solution. What is the molarity?

$$
\text { Molarity }(M)=\frac{\text { Moles }_{\text {solute }}}{\text { Liter }_{\text {solution }}}
$$

$$
\text { moles }=0.500 \mathrm{~g} \times \frac{1 \mathrm{~mole}}{58.44 \mathrm{~g}}=0.00855 \mathrm{~mol}
$$

$$
\text { Liter }=25.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.0250 \mathrm{~L}
$$

Molarity $(\mathrm{M})=\frac{\text { Moles }}{\text { Liter }}=\frac{0.00855 \mathrm{~mol}}{0.0250 \mathrm{~L}}=0.342 \mathrm{M}$

Examples

II. $0.010 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{MW} 331.2 \mathrm{~g})$ is dissolved in 2.0 L water. What is the ppm of $\mathrm{Pb}^{2+}(\mathrm{AW} 207.2 \mathrm{~g})$?

Ixamples

II. $0.010 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{MW} 331.2 \mathrm{~g})$ is dissolved in 2.0 L water. What is the ppm of Pb^{2+} (AW 207.2g)?

$$
\begin{gathered}
\mathrm{ppm}=\frac{\mathrm{mg}_{\text {solute }}}{\text { Liter }_{\text {solution }}} \\
\mathrm{g}_{\text {solute }}=0.010 \mathrm{~g} \times \frac{207.2 \mathrm{~g}_{\mathrm{pb}}}{331.2 \mathrm{~g}_{\mathrm{Pb}(\mathrm{NO})^{2}}}=0.0062 \mathrm{~g}_{\mathrm{pb}} \\
\mathrm{mg}_{\text {solute }}=0.0062 \mathrm{~g} \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}}=6.2 \mathrm{mg}_{\mathrm{Pb}} \\
\mathrm{ppm}=\frac{\mathrm{mg}_{\text {solute }}}{\text { Liter }_{\text {solution }}}=\frac{6.2 \mathrm{mg}_{\mathrm{Pb}}}{2.0 \mathrm{~L}}=3.1 \mathrm{ppm}
\end{gathered}
$$

Examples

III.A $355 \mathrm{~mL}(12 \mathrm{oz})$ can of Coca-Cola contains 42.1 g of

 fructose and has a density of $1.15 \mathrm{~g} / \mathrm{mL}$. What is the weight percent of fructose?
Ixamples

III.A $355 \mathrm{~mL}(12 \mathrm{oz})$ can of Coca-Cola contains 42.1 g of fructose and has a density of $1.15 \mathrm{~g} / \mathrm{mL}$. What is the weight percent of fructose?

$$
\begin{array}{r}
\% w t=\frac{g_{\text {solute }}}{g_{\text {solution }}} \\
g_{\text {solution }}=355 \mathrm{~mL} \times \frac{1.15 \mathrm{~g}}{1 \mathrm{~mL}}=408 \mathrm{~g}
\end{array}
$$

$$
\% \mathrm{wt}=\frac{\mathrm{g}_{\text {solute }}}{\mathrm{g}_{\text {solution }}}=\frac{42.1 \mathrm{~g}}{408 \mathrm{~g}} \quad=10.3 \%
$$

Preparing Solutions

Steps

1. Measure out Solute
2. Transfer to flask designed "To Contain"
3. Dilute with Solvent to final volume

Transferring Solute

I. "Quantitatively Transfer" the solute
A. Every solute molecule ends up in the solution flask
B. Rinse weighing vessel with solvent 3 times
c. May pre-dissolve in weighing vessel with solvent

1. Helpful for static electricity and evaporating liquids
II. Heat needed to dissolve solute?
A. Gently heating Pyrex vol. flasks OK
B. Better to pre-dissolve by heating in a beaker

Adding Solvent

I. Add small amount of solvent before solute
A. Minimizes evaporation of liquid solute
B. Aids dissolution of solute
II. After adding solute, fill the flask half way, stopper and swirl to dissolve
III. When completely dissolved, fill flask to the mark
A. USE A DROPPER FOR LAST mL
B. NEVER GO OVER THE MARK!!
IV.Stopper flask; gently invert several times

Questions when Preparing Solutions

I. What will the solution be used for?
II. When will the solution be used?
III. What accuracy is needed for concentration?
IV.To what extent is purity / contamination an issue?
V. What contaminates are most critical?
VI. What volume is needed?
VII.Will the solution change over time and how?

Diluting Stock Solutions

I. Accurate and convenient way to make lower concentration solutions
II. Concentrated stock solutions have less tendency to change over time
III.Accuracy 1% or better with volumetric pipettes IV.Accuracy $2-3 \%$ with graduated cylinders

Calculating Stock Solution Dilution

Moles removed from Stock $=$ Moles in Diluted Solution

Volume \times Concentration $=$ Moles
$(\mathrm{L}) \quad(\mathrm{mol} / \mathrm{L}) \quad(\mathrm{mol})$

$$
\begin{gathered}
\mathrm{V}_{\mathrm{s}} \times \mathrm{C}_{\mathrm{s}}=\mathrm{V}_{\mathrm{d}} \times \mathrm{C}_{\mathrm{d}} \quad(\mathrm{~s}=\text { stock, } \mathrm{d}=\text { diluted }) \\
\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{d}} \times\left(\mathrm{C}_{\mathrm{d}} / \mathrm{C}_{\mathrm{s}}\right)
\end{gathered}
$$

Ixsmples
I. What volume of 1.25 M Stock solution is needed to make 25.0 mL of 0.0250 M solution?

Examples

I. What volume of 1.25 M Stock solution is needed to make 25.0 mL of 0.0250 M solution?

$$
V_{s}=V_{d} \times \frac{C_{d}}{C_{s}}
$$

$$
\mathrm{V}_{\mathrm{s}}=25.0 \mathrm{~mL} \times \frac{0.0250 \mathrm{M}}{1.25 \mathrm{M}}=0.500 \mathrm{~mL}
$$

Ixamples

II. 1.00 mL of $5.0 \mathrm{~g} / \mathrm{L}$ solution is diluted to 50.0 mL . What is the concentration in ppm?

Examples

II. 1.00 mL of $5.0 \mathrm{~g} / \mathrm{L}$ solution is diluted to 50.0 mL . What is the concentration in ppm?

$$
\begin{gathered}
\mathrm{ppm}=\frac{\mathrm{mg}_{\text {solute }}}{\text { Liter }_{\text {solution }}} \\
\mathrm{mg}_{\text {solute }}=1.00 \mathrm{~mL} \times \frac{5.0 \mathrm{~g}_{\text {solute }}}{1 \mathrm{~L}_{\text {solution }}}=5.0 \mathrm{mg} \\
\mathrm{~L}_{\text {solution }}=50.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.0500 \mathrm{~L}
\end{gathered}
$$

$$
\mathrm{ppm}=\frac{\mathrm{mg}_{\text {solute }}}{\text { Liter }_{\text {solution }}}=0.0500 \mathrm{mg} \quad=100 \mathrm{ppm}
$$

plif

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

Check: Take out your calculator and calculate:
I. The pH when $\left[\mathrm{H}^{+}\right]=1.25 \times 10^{-4} \mathrm{M}$
II. $\left[\mathrm{H}^{+}\right]$when $\mathrm{pH}=8.7$

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}
$$

pH

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

Check: Take out your calculator and calculate:
I. The pH when $\left[\mathrm{H}^{+}\right]=1.25 \times 10^{-4} \mathrm{M}$ I. 3.9
II. $\left[\mathrm{H}^{+}\right]$when $\mathrm{pH}=8.7$

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}
$$

pre ilectrode
I. Two electrodes in one barrel
II. Outside one responds to $\left[\mathrm{H}^{+}\right]$ III.Other is reference electrode: voltage does not change
IV. Both have own electrolyte solutions (must keep filled)
V. Sometimes electrodes are sealed and do not need filling

pH LiLectrodes

I. Tip has thin glass membrane $(\sim 0.1 \mathrm{~mm})$
A. Easily broken!
II. Membrane must be hydrated to function
A. Immerse electrode in water or buffer solution at least 30 minutes before use
III. Water and tiny H^{+}ions move through membrane
A. Charge difference creates a voltage
B. pH meter converts voltage to pH
C. Best to store pH probe in 7.0 buffer
D. Requires calibration!

pll Meter Calibration

I. pH meter only as good as buffers used to calibrate it
II. Usually use commercially prepared buffers
III.Buffers accurate to $\pm 0.01 \mathrm{pH}$ units
IV.pH 4, 7, 10 used to calibrate meters
V. Choose pair based on expected measurements
VI.Re-calibrate often

Desiccators

I. Dry Storage of:
A. Hygroscopic reagents
B. Cooling glassware
II. Lid-base seal is greased
A. Slide lid off-NEVER pull up!
B. Do NOT set lid down (except back on base)

T'oday's lab: Preparing Solutions and Mreasuring pry

I. Acid Solution using Solid Solute
II. Base Solution by Diluting Solution of Known Concentration

Note: Next week, NO pre-lab

