2: Mass, Volume, Significant Figures

<u>Outline</u>

- Measuring Mass
- Measuring Volume
- Significant figures

Mass Measurement

- Measure mass not weight
- Mass is measured with a balance (a scale measures weight)
- Most balances today are electronic although some true mass comparison balances are still encountered.

Balances

- Balances come in a variety of capacities and sensitivities.
- Large capacity
 - >1 kg
 - Usually have only 0.1 g readability
- Analytical
 - Readability to 0.001 or 0.0001 g
 - Usually capacities of less than 200 g

Electronic Balances

- Balance pan placed over electromagnet
- Mass depresses the pan
- Current applied to electromagnet restores pan to original position
- Amount of current necessary is proportional to mass on the pan

Anal. Chem., **1982**, 54, 973A

Single-Pan Mechanical Balance

- Previous generation of analytical balances.
- Still very usable!
- Require more maintenance
- Less easy to read than electronic balances

Triple-beam Balances

Still useful when precision not critical

Balances are Sensitive and Delicate

- Analytical balances can measure the mass of the dot on an 'i'.
 - Should be placed somewhere without vibrations
 - Stone-top table is best.
- Must be very level in order to perform properly.
 - Always check the bubble level before using
- Do not to touch object you are massing with your fingers!

Balances are Sensitive and Delicate

- Close doors to avoid air currents
- Samples must be at room temperature
 Air currents from heat exchange cause errors
- Never put chemicals directly on balance pan
 - Use clean receiving vessels (weigh paper, beaker, etc.)

Issues that can affect measurement

- Off-center load
 - place mass in center of pan
- Static electricity
 - especially at low humidity
- Buoyancy
- Evaporation of volatile materials
 - Use a closed container for these
- Spilled materials from earlier use ALWAYS CLEAN UP SPILLS IMMEDIATELY!!!

Buoyancy Error

- Actual mass would be mass in a vacuum
- Apparent mass (measured in air) is less due to buoyancy
- Buoyancy is mass of the air displaced
- Buoyancy error occurs because density of object not equal to density of standard weights

Buoyancy equation:

$= m = m'(1 - d_a/d_w)/(1 - d_a/d)$

- m is true mass
- m' is mass read from a balance
- d_a is density of air (0.0012 g/mL at 1atm and 25°C)
- d, is density of balance weights (8.0 g/mL)
- d is density of the object being weighed

Example: Buoyancy correction

- Find the true mass of water (density=1.00 g/mL) if the apparent mass is 100.00 g.
 - Answer: 100.11 g
 - Note: the buoyancy error for water can be significant, especially when using water to calibrate volumetric glassware

Outline

- Measuring Mass
- **Measuring Volume**
- Significant figures

Volumetric Ware

- Beakers
- **Erlenmeyer Flasks**
- Graduated Cylinders Volumetric Flasks •
- **Pipets**
 - Transfer / Volumetric single volume
 - Graduated Mohr and serological
 - Mechanical syringe and pump
- **Burets**

Types of Calibration

• TD: "To Deliver"

 Will deliver the volume indicated when filled to calibration mark and then drained.

Pipettes, burets, some grad cylinders

- TC: "To Contain"
 - Will contain the volume indicated when filled to calibration mark

Volumetric flasks, some grad cylinders

Temperature Effects

- Liquid volume varies with temperature
 - 5 °C change in temp can cause significant change in volume of water (~ 0.025%/ °C)
 - For some organic liquids, 1°C can be significant
- Volumetric ware expands and contracts
 - Glass has low thermal coefficient of expansion
 - Change does not need to be considered for most analytical work

Temperature and Density (g/mL) of Water

	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
15	0.999099	0.999084	0.999069	0.999054	0.999038	0.999023	0.999007	0.998991	0.998975	0.998959
16	0.998943	0.998926	0.998910	0.998893	0.998877	0.998860	0.998843	0.998826	0.998809	0.998792
17	0.998774	0.998757	0.998739	0.998722	0.998704	0.998686	0.998668	0.998650	0.998632	0.998613
18	0.998595	0.998576	0.998558	0.998539	0.998520	0.998501	0.998482	0.998463	0.998444	0.998424
19	0.998405	0.998385	0.998365	0.998345	0.998325	0.998305	0.998285	0.998265	0.998244	0.998224
20	0.998203	0.998183	0.998162	0.998141	0.998120	0.998099	0.998078	0.998056	0.998035	0.998013
21	0.997992	0.997970	0.997948	0.997926	0.997904	0.997882	0.997860	0.997837	0.997815	0.997792
22	0.997770	0.997747	0.997724	0.997701	0.997678	0.997655	0.997632	0.997608	0.997585	0.997561
23	0.997538	0.997514	0.997490	0.997466	0.997442	0.997418	0.997394	0.997369	0.997345	0.997320
24	0.997296	0.997271	0.997246	0.997221	0.997196	0.997171	0.997146	0.997120	0.997095	0.997069
25	0.997044	0.997018	0.996992	0.996967	0.996941	0.996914	0.996888	0.996862	0.996836	0.996809
26	0.996783	0.996756	0.996729	0.996703	0.996676	0.996649	0.996621	0.996594	0.996567	0.996540
27	0.996512	0.996485	0.996457	0.996429	0.996401	0.996373	0.996345	0.996317	0.996289	0.996261
28	0.996232	0.996204	0.996175	0.996147	0.996118	0.996089	0.996060	0.996031	0.996002	0.995973
29	0.995944	0.995914	0.995885	0.995855	0.995826	0.995796	0.995766	0.995736	0.995706	0.995676
30	0.995646	0.995616	0.995586	0.995555	0.995525	0.995494	0.995464	0.995433	0.995402	0.995371

Temperature and Density (g/mL) of Water

		0.0	0.1	0.2	0.3
	15	0.999099	0.999084	0.999069	0.999054
	16	0.998943	0.998926	0.998910	0.998893
	17	0.998774	0.998757	0.998739	0.998722
	18	0.998595	0.998576	0.998558	0.998539
What is the actual mass of 5.000 mL H ₂ O at					

Reading Volumetric Ware

Answer: 4.994 g

- The problem of parallax

 Liquid sags (meniscus) in the center of the column due to gravity
- Eye must be at a 90° angle to the volumetric device in order to read the level properly.

16.2 °C?

Cleaning Glassware

- Volumetric glassware must be clean to perform properly
- Beakers, flasks, cylinders clean easily

 Use detergent and brushes
- Buret, vol. flasks and pipets cannot be done with a brush!
 - Fill with detergent solution above the calibration mark(s).
 - Invert several times, carefully
 - Rinse with several portions of tap water and then distilled water
 - Check that it drains with no clinging drops.
 - Repeat washing if drops are observed.
 - If needed, consult instructor for stronger measures.

Beakers and Flasks

- Glass or plastic
- Accuracy of graduations: typically ±5% accuracy
 TD vs TC doesn't matter
 - TD vs TC doesn't matter

Graduated Cylinders

- Glass or plastic
- Accuracy: usually 1% or better
- Calibrated 'to deliver' (TD) or 'to contain' (TC).
- Different grades: Certified, Class A, Class B, Educational-Grade, Economy-Grade, etc.
- Should NEVER be heated even if Pyrex[®]

Volumetric Flasks

(IMAX 5

- For solutions of a single volume
- Designed 'to contain' (TC)
- Class A and Class B
- Accuracy varies with size of flask
- Pyrex[®] or Kimax[®] can be gently heated if need to dissolve solute
- NOT for long-term storage
- \$\$Expensive\$\$
- Question: % error of 1mL and 1000 mL flasks?

_		
) M	Volume	Tolerance (Class A)
Л Д	1 mL	0.01 mL
	10 mL	0.02 mL
	25 mL	0.03 mL
	50 mL	0.05 mL
1	100 mL	0.08 mL
\mathbb{N}	250 mL	0.10 mL
$\rightarrow \parallel$	500 mL	0.15 mL
00mL TC20°C	1000 mL	0.30 mL
/		

Volumetric Flasks For solutions of a single Volume Tolerance volume (Class A) Designed 'to contain' (TC) Class A and Class B 1 mL 0.01 mL Accuracy varies with size 0.02 mL 10 mL of flask 25 mL 0.03 mL Pyrex[®] or Kimax[®] can be gently heated if need to dissolve solute 50 mL 0.05 mL 100 mL 0.08 mL NOT for long-term 250 mL 0.10 mL storage \$\$Expensive\$\$ 500 mL 0.15 mL Question: % error of 1mL KIMAX 500mL 1000 mL 0.30 mL and 1000 mL flasks? • 1mL: 1% • 1000mL: 0.03 %

- **Pipets**
- Filled using a bulb
- NEVER use mouth to apply suction
- Use your 'good' hand to hold pipet and your 'off' hand to squeeze the bulb
- Use your first finger, not thumb, to close the pipet and adjust meniscus to mark
- Be mindful of where the tip has been—is it clean enough to stick into a solution?

Volumetric Pipets

- Designed to deliver (TD) a single volume

 (usually at 20 °C)
- Calibrated to account for the thin film of solution on inner wall and the drop at the tip
- Allow pipette to drain under gravity (no shaking or blowing) with tip touching the receiving container
- Lightly touch tip to transfer clinging drop; then remove soon after the transfer
- With care, accuracy is four digits with Class A

Pipette Practice

- Obtain a 10 or 25 mL pipette
- Fill a 125 mL beaker with water
- Practice:
 - Squeeze bulb BEFORE putting on pipette
 - Seal bulb just enough
 - Pipette in "good" hand, bulb in other hand
- · DO NOT
 - Slam pipette tip into bottom of beaker
 - Suck liquid into bulb

Graduated Pipets

/b\

а

b

- Multiple graduations for delivering range of volumes.
- Look at how the bottom volume mark is applied
 - Some require you to stop at a line (a)
 - Some designed to be drained completely (b)
- Usually accurate at small volumes if filled and drained carefully
- With large volumes it is difficult to stop on the desired line readily

Syringe Pipets

- Two types:
 - Simple manual syringe (a)
 - Spring-loaded with disposable tips (b)
- Used for very small volumes (1 to 1000 μL)
- Spring-Loaded types:
 - \$\$\$
 - Lose accuracy over time and must be re-calibrated
 - NEVER turn upside down or lay down with a tip attached

Burets

- Accurately deliver variable amounts of liquid
- 10, 25, 50 and 100 mL sizes
- Class A and Class B
- Readable to about 0.01 (±0.02) mL for 50 mL buret
- Valve (stopcock) permits careful release of liquid
- "Opposite" grip prevents loosening of stopcock
- Today most stopcocks are made of Teflon®; older burets had glass stopcocks that required grease

Outline

- Measuring Mass
- Measuring Volume
- Significant figures

Rules with Zeros

- Any digit that is NOT zero is considered significant.
- Zeros between non-zero digits ARE significant.

ex: 101 (3 sig figs)

• Zeros to the left of the FIRST nonzero digit are NOT significant. They are just place holders.

ex: 0.003 (1 sig fig)

If number HAS a decimal point, any zeros to the right of the last nonzero digit ARE significant.

ex: 0.500 (3 sig figs)

• If number DOES NOT HAVE a decimal point, zeros to right of last nonzero digit are NOT significant

ex: 100 (1 sig fig)

- To indicate sig figs, put in a decimal or use scientific notation ex: 100. or 1.00×10^2

Practice

- How many significant figures in each number below?
 - 34.65
 - 0.7601
 - 4400
 - 810.3
 - 3.00
 - 0.0024

Practice

• How many significant figures in each number below?

4

4

2

4

3

2

- 34.65
- 0.7601
- 4400
- 810.3
- 3.00
- 0.0024

Arithmetic

- Multiplication and division: the number with the least significant figures governs
 - ex: $0.25 \times 4.0034 = 1.0$ $0.0354 \div 8.3 = 0.0043$
- Addition and subtraction: line up the decimals; number whose sig figs stop first governs

100	100.24
+ 1.1	- 1.1
100 (1 sig fig)	99.1 (3 sig figs)

Practice

- 9.24 × 4.7619 =
- (1.24 0.872 =
- 0.51 + 0.8692 =

Practice

- $9.24 \times 4.7619 = 44.0$
- 1.24 0.872 = 0.37
- 0.51 + 0.8692 = 1.38

Today's Lab

Experiment 2a: Measuring Density of a Liquid and a Solid

density = $\frac{\text{mass}}{\text{volume}}$

 Consider precision (significant figures) of different instruments to measure same quantities

Experiment 2b: Calibration of Volumetric Glassware

 Use density of water and high precision of balances to calibrate glassware