2: Mass, Volume, Significant Figures

Outline

- Measuring Mass
- Measuring Volume
- Significant figures

Mass Measurement

- Measure mass not weight
- Mass is measured with a balance (a scale measures weight)
- Most balances today are electronic although some true mass comparison balances are still encountered.

Balances

- Balances come in a variety of capacities and sensitivities.
- Large capacity
- >1 kg
- Usually have only 0.1 g readability
- Analytical
- Readability to 0.001 or 0.0001 g
- Usually capacities of less than 200 g

Electronic Balances

- Balance pan placed over electromagnet
- Mass depresses the pan
- Current applied to electromagnet restores pan to original position
- Amount of current necessary is proportional to mass on the pan

Single-Pan Mechanical Balance

- Previous generation of analytical balances.
- Still very usable!
- Require more maintenance
- Less easy to read than electronic balances

Triple-beam Balances

- Still useful when precision not critical

Balances are Sensitive and Delicate

- Analytical balances can measure the mass of the dot on an ' i '.
- Should be placed somewhere without vibrations
- Stone-top table is best.
- Must be very level in order to perform properly.
- Always check the bubble level before using
- Do not to touch object you are massing with your fingers!

Balances are Sensitive and Delicate

- Close doors to avoid air currents
- Samples must be at room temperature - Air currents from heat exchange cause errors
- Never put chemicals directly on balance pan
- Use clean receiving vessels (weigh paper, beaker, etc.)

Issues that can affect measurement

- Off-center load
- place mass in center of pan
- Static electricity
- especially at low humidity
- Buoyancy
- Evaporation of volatile materials
- Use a closed container for these
- Spilled materials from earlier use -

ALWAYS CLEAN UP SPILLS IMMEDIATELY!!!

Buoyancy Error

- Actual mass would be mass in a vacuum
- Apparent mass (measured in air) is less due to buoyancy
- Buoyancy is mass of the air displaced
- Buoyancy error occurs because density of object not equal to density of standard weights

Buoyancy equation:

- m=m' $\left(1-d_{i} / d_{w}\right) /\left(1-d_{i} / d\right)$
- m is true mass
- m' is mass read from a balance
- d_{a} is density of air ($0.0012 \mathrm{~g} / \mathrm{mL}$ at 1atm and $25^{\circ} \mathrm{C}$)
- d_{w} is density of balance weights $(8.0 \mathrm{~g} / \mathrm{mL})$
- d is density of the object being weighed

Example: Buoyancy correction

- Find the true mass of water
(density $=1.00 \mathrm{~g} / \mathrm{mL}$) if the apparent mass is 100.00 g .
- Answer: 100.11 g
- Note: the buoyancy error for water can be significant, especially when using water to calibrate volumetric glassware

Outline

- Measuring Mass
- Measuring Volume
- Significant figures

Volumetric Ware

- Beakers
- Erlenmeyer Flasks
- Graduated Cylinders
- Volumetric Flasks
- Pipets
- Transfer / Volumetric - single volume
- Graduated - Mohr and serological
- Mechanical - syringe and pump
- Burets

Types of Calibration

- TD: "To Deliver"
- Will deliver the volume indicated when filled to calibration mark and then drained.
- Pipettes, burets, some grad cylinders
- TC: "To Contain"
- Will contain the volume indicated when filled to calibration mark
- Volumetric flasks, some grad cylinders

Temperature Effects

- Liquid volume varies with temperature
$-5{ }^{\circ} \mathrm{C}$ change in temp can cause significant change in volume of water ($\sim 0.025 \% /{ }^{\circ} \mathrm{C}$)
- For some organic liquids, $1^{\circ} \mathrm{C}$ can be significant
- Volumetric ware expands and contracts
- Glass has low thermal coefficient of expansion
- Change does not need to be considered for most analytical work

Temperature and Density (g/mL)

Temperature and Density (g / mL) of Water

	$\mathbf{0 . 0}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\boldsymbol{0 . 3}$	$\boldsymbol{0 . 4}$	$\boldsymbol{0 . 5}$	$\boldsymbol{0 . 6}$	$\boldsymbol{0 . 7}$	$\boldsymbol{0} \boldsymbol{0}$
$\mathbf{1 5}$	0.999099	0.999084	0.999069	0.999054	0.999038	0.999023	0.999007	0.998991	0.998975
$\mathbf{1 6}$	0.998943	0.998926	0.998910	0.998893	0.998877	0.998860	0.998843	0.998826	0.998809
$\mathbf{1 7}$	0.998774	0.998757	0.998739	0.998722	0.998704	0.998686	0.998668	0.998650	0.998632
$\mathbf{1 8}$	0.998595	0.998576	0.998558	0.998539	0.998520	0.998501	0.998482	0.998463	0.998444
$\mathbf{1 9}$	0.998405	0.998385	0.998365	0.998345	0.998325	0.998305	0.998285	0.998265	0.998244
$\mathbf{2 0}$	0.998203	0.998183	0.998162	0.998141	0.998120	0.998099	0.998078	0.998056	0.998035
$\mathbf{2 1}$	0.997992	0.997970	0.997948	0.997926	0.997904	0.997882	0.997860	0.997837	0.997815
$\mathbf{2 2}$	0.997770	0.997747	0.997724	0.997701	0.997678	0.997655	0.997632	0.997608	0.997585
$\mathbf{2 3}$	0.997538	0.997514	0.997490	0.997466	0.997442	0.997418	0.997394	0.997369	0.997345
$\mathbf{2 4}$	0.997296	0.997271	0.997246	0.997221	0.997196	0.997171	0.997146	0.997120	0.997095
$\mathbf{2 5}$	0.997044	0.997018	0.996992	0.996967	0.996941	0.996914	0.996888	0.996862	0.996836
$\mathbf{2 6}$	0.996783	0.996756	0.996729	0.996703	0.996676	0.996649	0.996621	0.996594	0.996567
$\mathbf{2 7}$	0.996512	0.996485	0.996457	0.996429	0.996401	0.996373	0.996345	0.996317	0.996289
$\mathbf{2 8}$	0.996232	0.996204	0.996175	0.996147	0.996118	0.996089	0.996060	0.996031	0.996002
$\mathbf{2 9}$	0.995944	0.995914	0.995885	0.995855	0.995826	0.995796	0.995766	0.995736	0.995706
$\mathbf{3 0}$	0.995646	0.995616	0.995586	0.995555	0.995525	0.995494	0.995464	0.995433	0.995402

Temperature and Density (g/mL) of Water

	$\mathbf{0 . 0}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 3}$		
$\mathbf{1 5}$	0.999099	0.999084	0.999069	0.999054		
$\mathbf{1 6}$	0.998943	0.998926	0.998910	0.998893		
$\mathbf{1 7}$	0.998774	0.998757	0.998739	0.998722		
$\mathbf{1 8}$	0.998595	0.998576	0.998558	0.998539		What is the actual mass of 5.000 mL H H at
:---						
$16.2^{\circ} \mathrm{C}$?						

Reading Volumetric Ware

- The problem of parallax
- Liquid sags (meniscus) in the center of the column due to gravity
- Eye must be at a 90° angle to the volumetric device in order to read the level properly.

Cleaning Glassware

- Volumetric glassware must be clean to perform properly
- Beakers, flasks, cylinders clean easily
- Use detergent and brushes
- Buret, vol. flasks and pipets cannot be done with a brush!
- Fill with detergent solution above the calibration mark(s).
- Invert several times, carefully
- Rinse with several portions of tap water and then distilled water
- Check that it drains with no clinging drops.
- Repeat washing if drops are observed.
- If needed, consult instructor for stronger measures.

Beakers and Flasks

- Glass or plastic
- Accuracy of graduations: typically $\pm 5 \%$ accuracy
- TD vs TC doesn't matter

Graduated Cylinders

- Glass or plastic
- Accuracy: usually 1% or better
- Calibrated 'to deliver' (TD) or 'to contain' (TC).
- Different grades: Certified, Class A, Class B, Educational-Grade, Economy-Grade, etc.
- Should NEVER be heated even if Pyrex ${ }^{8}$

Volumetric Flasks

- For solutions of a single volume
- Designed 'to contain' (TC)
- Class A and Class B
- Accuracy varies with size of flask
- Pyrex ${ }^{8}$ or Kimax can be gently heated if need to dissolve solute
- NOT for long-term storage
- \$\$Expensive\$\$
- Question: \% error of 1 mL and 1000 mL flasks?

Volume	Tolerance (Class A)
1 mL	0.01 mL
10 mL	0.02 mL
25 mL	0.03 mL
50 mL	0.05 mL
100 mL	0.08 mL
250 mL	0.10 mL
500 mL	0.15 mL
1000 mL	0.30 mL

Volumetric Flasks

- For solutions of a single volume
- Designed 'to contain' (TC)
- Class A and Class B
- Accuracy varies with size of flask
- Pyrex ${ }^{8}$ or Kimax ${ }^{0}$ can be gently heated if need to dissolve solute
- NOT for long-term storage
- \$\$Expensive\$\$
- Question: \% error of 1 mL and 1000 mL flasks?
- 1mL: 1\%
- 1000mL: 0.03 \%

Pipets

- Filled using a bulb
- NEVER use mouth to apply suction
- Use your 'good' hand to hold pipet and your 'off' hand to squeeze the bulb
- Use your first finger, not thumb, to close the pipet and adjust meniscus to mark
- Be mindful of where the tip has been-is it clean enough to stick into a solution?

Volumetric Pipets

- Designed to deliver (TD) a single volume - (usually at $20^{\circ} \mathrm{C}$)
- Calibrated to account for the thin film of solution on inner wall and the drop at the tip
- Allow pipette to drain under gravity (no shaking or blowing) with tip touching the receiving container
- Lightly touch tip to transfer clinging drop; then remove soon after the transfer
- With care, accuracy is four digits with Class A

Pipette Practice

- Obtain a 10 or 25 mL pipette
- Fill a 125 mL beaker with water
- Practice:
- Squeeze bulb BEFORE putting on pipette
- Seal bulb just enough
- Pipette in "good" hand, bulb in other hand
- DO NOT
- Slam pipette tip into bottom of beaker
- Suck liquid into bulb

Graduated Pipets

- Multiple graduations for delivering range of volumes.
- Look at how the bottom volume mark is applied
- Some require you to stop at a line (a)
- Some designed to be drained completely (b)
- Usually accurate at small volumes if filled and drained carefully
- With large volumes it is difficult to stop on the desired line readily

Syringe Pipets

- Two types:
- Simple manual syringe (a)
- Spring-loaded with disposable tips (b)
- Used for very small volumes (1 to $1000 \mu \mathrm{~L}$)
- Spring-Loaded types:
- \$\$
- Lose accuracy over time and must be re-calibrated
- NEVER turn upside down or lay down with a tip attached
be accuracy over time and must

Burets

- Accurately deliver variable amounts of liquid
- 10, 25, 50 and 100 mL sizes
- Class A and Class B
- Readable to about 0.01 (± 0.02) mL for 50 mL buret
- Valve (stopcock) permits careful release of liquid
- "Opposite" grip prevents loosening of stopcock
- Today most stopcocks are made of Teflon ®; older burets had glass stopcocks that required grease

Outline

- Measuring Mass
- Measuring Volume
- Significant figures

Rules with Zeros

- Any digit that is NOT zero is considered significant.
- Zeros between non-zero digits ARE significant.

$$
\text { ex: } 101 \text { (3 sig figs) }
$$

- Zeros to the left of the FIRST nonzero digit are NOT significant. They are just place holders.

$$
\text { ex: } 0.003 \text { (1 sig fig) }
$$

- If number HAS a decimal point, any zeros to the right of the last nonzero digit ARE significant.

$$
\text { ex: } 0.500 \text { (3 sig figs) }
$$

- If number DOES NOT HAVE a decimal point, zeros to right of last nonzero digit are NOT significant

ex: 100 (1 sig fig)

- To indicate sig figs, put in a decimal or use scientific notation ex: 100. or 1.00×10^{2}

Practice

- How many significant figures in each number below?
- 34.65
- 0.7601
- 4400
- 810.3
- 3.00
- 0.0024

Practice

- How many significant figures in each number below?

$$
\begin{array}{ll}
-34.65 & 4 \\
-0.7601 & 4 \\
-4400 & 2 \\
-810.3 & 4 \\
-3.00 & 3 \\
-0.0024 & 2
\end{array}
$$

Arithmetic

- Multiplication and division: the number with the least significant figures governs

$$
\begin{aligned}
& \text { ex: } 0.25 \times 4.0034=1.0 \\
& 0.0354 \div 8.3=0.0043
\end{aligned}
$$

- Addition and subtraction: line up the decimals; number whose sig figs stop first governs

100	100.24
$+\quad 1.1$	-1.1

$100(1 \mathrm{sig}$ fig $)$	$-99.1(3$ sig figs $)$

Practice

- $9.24 \times 4.7619=$
- $1.24-0.872=$
- $0.51+0.8692=$

Practice

- $9.24 \times 4.7619=44.0$
- $1.24-0.872=0.37$
- $0.51+0.8692=1.38$

Today's Lab

- Experiment 2a: Measuring Density of a Liquid and a Solid

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

- Consider precision (significant figures) of different instruments to measure same quantities
- Experiment 2b: Calibration of Volumetric Glassware
- Use density of water and high precision of balances to calibrate glassware

